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Abstract 
Extruded profile structures are widely used as efficient energy absorbers in vehicle front and rear ends throughout the 
automotive industry. Especially for crash structures under axial compression the usage of physical trigger mechanisms is 
state of the art to robustly initiate and maintain the desired deformation modes. To simulate these axially loaded crash 
structures, imperfections are needed to avoid unrealistic deformation modes caused by an ideal finite element model. 
Furthermore stochastic imperfections can be used for robustness evaluations. Hence an automatic model creation process 
has been developed which allows an application of geometrical imperfections on any given extruded profile structure. 
This is done by extending GRAMB (GRAph based Mechanics Builder) which is part of the Graph and Heuristic based 
Topology Optimization (GHT). Furthermore a parametrized and graph related mesh modification and morphing process 
has been implemented, which allows the application of various physical triggers such as indents, cutouts and chamfers 
on profiles generated by GRAMB. The application of the physical triggers has been investigated in parameter 
optimizations for a longitudinal member in a front crash load case. The crashworthiness of the front end has been improved 
and the robustness of the optimal designs was investigated. 
Keywords: Topology optimization, crash load cases, profile structures, geometrical imperfections, triggers for crash 
structures 

1. Introduction 

Throughout the automotive industry, extruded profile structures are broadly used as efficient energy absorbers in vehicle 
front and rear ends. Although a lot of theoretical, experimental and numerical investigations have been performed over 
the years, there is still research work ongoing, particularly when it comes to the (topology) optimization of these structures 
in highly non-linear crash load cases (e.g. [1], [2]). 
The present work is intended as a basis for a topology optimization of axially loaded structures with the Graph and 
Heuristic based Topology Optimization (GHT) [3]. Therefore the state of the art in the automotive industry such as the 
usage of physical triggers for the robust initiation and maintenance of desired deformation modes and crash characteristics 
has to be implemented in the automatic model creation process. Furthermore the simulation of these axially loaded crash 
structures requires the application of imperfections in order to avoid unrealistic deformation modes caused by an ideal FE 
model and to investigate the robustness regarding the structural response. Hence the GRAph based Mechanics Builder 
(GRAMB) which is part of the GHT is extended. GRAMB is used to extrude profile cross sections defined by a 
mathematical graph along a spline in order to automatically generate a finite element (FE) mesh. For the numerical studies 
in this work the explicit FE solver PAM-CRASH (v2017) is used. 
In this work geometrical imperfections are defined as model modifications which are only used in FE simulation in order 
to acquire a better accordance with real world observations. In comparison, physical triggers are defined as imperfections 
that are utilized both on real world and simulation components to influence the crash characteristic of the component and 
to robustly establish and maintain a desired mode of deformation. 

2. Geometrical imperfections 

2.1 Background 
For the progressive buckling of square profiles four types of modes are described by [4]: extensional, symmetric and two 



asymmetric modes. The extensional mode (axis symmetric folding pattern – compare Fig. 1) absorbs more energy than 
the other modes, but it can barely be observed in real world tests. Instead the other three modes predominate. The 
simulation of the buckling behavior of straight profiles is challenging since small variations in boundary conditions, 
material properties and geometry can lead to a considerable variation in the structural behavior and therefore the energy 
absorption [5]. The ideal geometry description as well as ideal material data and ideal boundary conditions, which are 
usually used in FE simulation, often lead to extensional modes for squared tubes [6]. 
To get more realistic modes in the FE simulation, several measures can be taken. Most of these replicate imperfections 
found in real world specimens and test procedures: Stochastic material data [7], stochastic loading conditions, stochastic 
wall thickness distributions [7] or stochastic profile wall deflections (nodal displacements) [5][8]. Another measure often 
taken is the use of deterministic triggers (e.g. wall deflection at the top section of the profile) to enforce a profile collapse 
in the desired mode [9]. 
Since the method described in this paper should be used with any profile cross section topology created by GRAMB, 
where the desired mode is often unknown, a deterministic trigger for a specific mode is not an option. Furthermore since 
only the profile models themselves can be manipulated by GRAMB, stochastic loading or boundary conditions are 
unsuitable as well. [6] found that the deflection of the profile walls has the greatest influence on the crushing mode 
compared to wall thickness and wall length deviation. Therefore a stochastic modification based on wall deflection was 
found to suit the requirements best to enable realistic modes and robustness investigations for unknown profile cross 
sections in an automatic model creation process. 

2.2 Simulation and application of stochastic fields 
The approach for generating the stochastic fields used by [5] and [7] is based on research by [10] where methods for the 
simulation of multi-dimensional Gaussian stochastic fields by spectral representation are described. While [5] and [7] use 
a two dimensional, univariate Gaussian field (2D-1V) for their respective work, a new approach is described in this work 
which is applicable to generate smooth fields for more complex profile structures (e.g. with inner profile knots and walls) 
as well as an implementation in the automatic model creation process with GRAMB. The first term in “XD-YV” 
represents the input of the stochastic field (e.g. 2D or 3D FE node coordinates), while the second term describes the 
number of stochastic field output variables (1V – univariate). 
For this purpose, two 3D-1V fields as described in [10] are used. The output of each field is used for the nodal 
displacement in both directions (x1 and x2) of the cross section plane respectively (Fig. 1). They are computed by a series 
of cosines (Eq. 1), which is computationally expensive but provides flexibility with non-equidistant meshes. For Eq. 1, 
random numbers (Φn1n2n3) between 0 and 1 have to be generated. Further information regarding Eq. 1 can be found in 
[10]. The simulation of the stochastic fields mathematically requires an infinite series of cosines. Since this cannot be 
established in an automated process which pursues short calculation times, a tradeoff has to be accepted and the number 
of sums is limited to a finite value (N1=N2=N3=25). 
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A power spectral density (PSD) function for 3D-1V fields is described in [11]. This function is part of the four An1n2n3 
terms in Eq. 1. As a tradeoff for the number of sums has to be accepted, the PSD function is modified in a way, that the 
output standard deviation of the stochastic fields corresponds with the input standard deviation. 
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The PSD function used is stated in Eq. 1, where σf is the standard deviation of the stochastic field. The parameters b1, b2 
and b3 are proportional to the correlation length of the stochastic fields in respective x1-, x2- and x3-directions (Fig. 1). 
Since x1 and x2 are directed in the cross section plane, the same parameter bprofile is used for b1 and b2. The parameter b3 
in extrusion direction is renamed to bext. The output values of both fields are calculated with Eq. 1, where the first field 
provides the stochastic displacement in x1-direction, and the second field the ones in x2-direction respectively. The input 
values for the simulation of both stochastic fields are the three dimensional FE node coordinates in the x1-x2-x3 coordinate 
system. In this work the parameters described by [12] are used (Table 1). 



Table 1. Parameters of the power spectral density function for local imperfections based on [12] 

Imperfection σf in mm bprofile in mm bext in mm 
Local 0.07 40 400 

 
The method developed in this work can also be applied to profiles extruded along a three-dimensional spline. The x1-x2-
x3 coordinate system is therefore translated and rotated for each spline section so that the field is smoothly aligned 
throughout the whole extrusion length. 
Fig. 1 shows example results for a square aluminum extrusion profile (AA6XXX T6, 80 x 80 x 400 mm, 1 kg) with and 
without applied stochastic fields in a simple drop hammer test. It can be seen that the dominant mode of deformation 
changed after the application of the stochastic fields from extensional mode to symmetric mode. For a series of ten test 
with individual stochastic fields an increase of 13.3% for the intrusion can be observed compared to the ideal FE geometry. 
 

 
Figure 1. Application of stochastic fields on a squared single cell structure 

3. Physical triggers 

3.1 Background 
Physical triggers are state of the art for automotive applications in order to initiate and maintain a defined and robust crash 
behavior. The topic has been studied intensively by many researchers. The work by [13] provides a broad overview over 
publications related to geometrical and material triggers for axially loaded crash structures. The measures described in 
literature contain prebuckling, corner indentations, triggering dents, corrugation of tubes, cutouts, chamfering, tube 
wrapping and many more. 
Not all of the physical triggers listed above meet the requirements for an automotive application which seeks for cost 
efficient manufacturing while still being able to influence the crash characteristic significantly. As a result, indentations 
as well as various cutouts are the most common physical triggers for aluminum profiles in automotive front end 
applications. Hence these triggers are implemented in the automatic model creation process. Another trigger that seems 
industrially feasible is the chamfering of extruded profiles. 

3.2 Modelling of physical triggers 
The application of the physical triggers is implemented in the automatic model creation process with GRAMB as a 
downstream mesh modification and morphing process after the completion of the initial meshing. Own techniques were 
developed since a connection between the existing profile mesh geometry and the mathematical graph used by GRAMB 
should be established in order to integrate the physical triggers in the optimization process of the GHT. All triggers are 
defined by their relative position on the extrusion spline (from 0 to 1) and within the profile cross section as well as other 
trigger specific parameters such as the trigger dimensions. The triggers implemented are profile corner and wall indents, 
profile corner and wall cutouts as well as end- and mid-section chamfers. Example applications of the physical triggers 
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are illustrated in Fig. 2 (a). It should be noted that for the chamfering triggers not only the FE nodes are moved, but also 
the related element thicknesses are reduced. Fig. 2 (b) shows the specific modelling parameters for the wall indent trigger. 
 

 
Figure 2. (a) Example application of physical triggers, (b) trigger specific parameters for wall indent trigger 

4 Example optimization of triggers parameters in a crash load case 

4.1 FE model 
The crash test investigated in this work is the RCAR Front Impact [14]. In this load case a vehicle impacts at a speed of 
15 km/h into an oblique (10°) rigid barrier with a 40% overlap. Instead of a full vehicle, a simple generic model of a 
vehicle front end is used (Fig. 3). It consists of an aluminum cross member facing the barrier with two aluminum 
longitudinal members tied to it. The material is AA6XXX T6 with a yield strength of 280 MPa. 
 

 
Figure 3. Example application of physical triggers 

 
The longitudinal members are connected via a rigid body definition with a point mass which inherits the weight (1500 kg) 
and the initial velocity (15 km/h) of the vehicle. The longitudinal members have a length of 500 mm and a rectangular 
profile geometry (130 mm x 90 mm) with a wall thickness of 2 mm which is not changed during the optimizations. The 
triggers are only applied to the longitudinal member on the side of the barrier overlap. 

4.2 Optimization setup 
The parameter optimization is performed with GRAMB and the commercial software LS-Opt (v5.21). A genetic algorithm 
with direct optimization [15] is used for the present optimization problem since it provides good design space exploration 
which is needed for the highly nonlinear structural responses of the crash simulations. The design variables used for this 
optimization are the positions of the physical triggers in extrusion direction as described in section 3.2. 
The objective of the optimization is the minimization of the maximum contact force measured between the front end and 
the barrier. Peaks in the force level during the crash event are undesirable since they can result in higher loads on the 
passengers as well as unwanted plastic deformation of downstream vehicle structures. As a constraint, the maximum 
intrusion is limited to 280 mm. To prevent the front end from sliding sideward along the barrier instead of absorbing 
energy by plastic deformation, a displacement constraint in y-direction is set. 

4.3 Example parameter optimizations 
In the first parameter optimization the position of twelve wall indents are used as design variables in order to trigger 
homogeneous symmetric buckling in the profile. In order to reduce the number of independent design variables, the 
position of the first trigger is used as one independent variable. As a second independent design variable a factor for the 
distances between the triggers is defined. Each trigger has a counterpart on the opposite profile side and the indent trigger 
positions on the long and short sides are shifted against each other in order to trigger the symmetric mode. 
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In the second parameter optimization four cutout triggers are applied to the structure. One cutout trigger is placed at each 
wall of the longitudinal member. The four axial positions of the triggers are the independent variables in this optimization. 
This optimization setup enables asymmetric trigger patterns, although the cutout triggers have corresponding positions 
close to cross member in the initial design. 
The optimal designs found in each of the parameter optimizations and their structural responses are shown in Table 2 and 
Fig. 4. Both optimizations result in a more uniform and therefore improved force-displacement curve. In comparison, the 
force-displacement curve of the reference structure as well as the initial designs with triggers (not shown in Fig. 4) show 
high force amplitudes with significant decreases of the force level in between. The reference structure buckles with an 
asymmetric folding pattern in the beginning which then shifts to a more symmetric one in the consecutive folds. 
 

Table 2. Results of the parameter optimization 

Design Fmax in kN Intmax in mm 
 initial optimum initial optimum 

Reference w/o trigger 71.9 - 275.5 - 
Indent wall - 2 indep., 11 dep. design variables 83.4 57.9 239.7 272.6 
Cutout wall - 4 indep. design variables 78.5 57.6 241.6 264.6 

 

 
Figure 4. Reference and optimal designs from parameter optimization (displacement scaled with factor 0.5) 

 
As intended by the optimization setup, the optimal structures with symmetric wall indents buckle in an almost perfect 
symmetric mode starting from the first fold on. The trigger setup lowers the force peaks significantly by directly initiating 
buckling in a symmetric mode and enforcing a shorter and therefore more efficient folding wavelength than in the 
reference structure. The symmetric buckling mode is maintained during the whole deformation. In comparison with the 
initial design, especially the distance between the trigger positions was increased (indent triggers in the initial design were 
more packed) in order to buckle in the symmetric folding pattern throughout the whole crash event. 
For the optimization run with the cutout triggers at each side of the profile an asymmetric trigger pattern is the optimal 
design in terms of the achieved objective function. In contrast to the optimal symmetric wall indent design as well as to 
the reference design, the folding pattern observed here is more irregular. Still it results in a significant decrease of the 
maximum force comparable to the symmetric design. The first fold is initiated by two cutouts which reduce the first force 
peak effectively and induce an asymmetric pattern. A third cutout initiates the next fold which preserves the asymmetric 
behavior. The fourth cutout at the end of the profile is not utilized as a buckling initiator. 

4.4 Robustness analysis of optimal designs 
Although both trigger designs initiate completely different folding patterns, the resulting force reduction is still similar. 
To investigate the robustness of these designs, ten calculations per design with applied stochastic fields (section 2.2) are 
performed. The standard deviations for the maximum force and intrusion are used as an evaluation criteria for the 
robustness. Table 3 shows the results of this investigation. As expected, the design with the symmetric trigger pattern on 
its walls shows a more robust behavior regarding geometrical imperfections than the reference design and the design with 
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the asymmetric pattern. In case of the symmetric design the defined folding pattern induced by the numerus wall indents 
is the cause. For the cutout trigger design only the first two lobes are directly triggered by cutouts. Therefore no defined 
folding pattern is enforced for the consecutive folds. It even shows a less robust behavior than the reference design without 
any triggers. Due to the applied imperfections, a bifurcation point can be identified in the folding pattern of the cutout 
design and therefore also in the structural responses. It is caused by the asymmetric trigger pattern, the inferior number 
of triggers compared to the symmetric design as well as potential contact points at the cutout edges. 
 

Table 3. Robustness of the optimal designs 

Design Fmax in kN Intmax in mm 
mean std.dev. mean std.dev. 

Reference w/o trigger 71.6 0.67 275.5 0.70 
Indent wall - 2 indep., 11 dep. design variables 57.9 0.13 272.7 0.34 
Cutout wall - 4 indep. design variables 61.9 3.75 269.9 3.56 

5. Conclusions 
In this work the necessary foundations for a topology optimization of axially loaded structures with the GHT have been 
presented. The investigations show that the developed geometrical imperfections provide reasonable results for triggering 
realistic deformation modes and have potential for the evaluation of the robustness of crash structures at the end of an 
optimization. Furthermore the physical triggers presented in this paper have been used in parameter optimizations and 
lead to significant improvements in the crashworthiness of a generic front end. 
Further research will focus on the development of new heuristics for the GHT in order to perform topology optimizations 
of axially loaded crash structures. Besides the heuristics also the optimization process itself needs adaptation for the 
application and optimization of physical triggers as well as a possible downstream robustness analysis. 
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