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Kurzfassung

Die Optimierung mechanischer Bauteile nimmt in der Entwicklung technischer
Produkte einen immer grofler werdenden Stellenwert ein. Ziel dieses Prozesses ist
herauszufinden, welche Form und Topologie eine Struktur besitzen muss, um die
an ihr gestellte Konstruktionsaufgabe besonders gut zu erfiillen. So kann beispiels-
weise mithilfe von Optimierungsverfahren zielgerichtet ermittelt werden, wie weit
das Gewicht eines Bauteils reduziert werden kann, ohne die Mindestanforderungen
an die mechanischen Eigenschaften zu unterschreiten. Das Resultat eines solchen
Verfahrens ist eine optimierte Struktur. Damit die resultierenden Strukturen auch
herstellbar sind, ist das Bestreben aktueller Forschung, Informationen tiiber die
Fertigungsprozesse direkt in die entsprechenden Optimierungsverfahren in Form
von Fertigungsrestriktionen zu integrieren.

In dieser Arbeit wird eine Methodik zur Integration der Fertigungsrestriktionen
bei 3D-Frasverfahren in die Topologieoptimierung mit der Level-Set-Methode
entwickelt. Als Restriktionen werden die Gewéahrleistung der Werkzeugzugéanglich-
keit jedes Bearbeitungspunktes sowie die Einhaltung einer Mindestwandstarke
berticksichtigt. Der dabei verfolgte Ansatz basiert auf der Induktion eines Struk-
turwachstums in Bereichen, die entweder unzugénglich oder zu diinn sind. Um
diese Bereiche zu identifizieren, wird ein Verfahren entwickelt, bei dem die Level-
Set-Funktion entlang der Aulenkonturen realistischer Werkzeuggeometrien unter
Beriticksichtigung verfiigbarer Bearbeitungsrichtungen interpoliert wird. Zur an-
schliefenden Induktion eines Strukturwachstums wird in regelméafligen Schritten
ein Potential definiert. Dieses besitzt innerhalb der Struktur grofiere Werte als
auflerhalb und éndert sich normal zum Strukturrand linear. Eine Minimierung
des auf dem Strukturrand vorliegenden Potentials wird in ein Strukturwachstum
iiberfithrt. Dazu werden die Sensitivitaten des Potentials beziiglich Verschiebungen
des Strukturrandes ermittelt und mit den Entwicklungsgeschwindigkeiten der
korrespondierenden Level-Set-Funktion gekoppelt. Im Zuge dieses Ansatzes wer-
den beide Fertigungsrestriktionen in eine gemeinsame mathematische Restriktion
tiberfithrt und explizit in das Optimierungsproblem integriert.

Stichworte: Topologieoptimierung, Level-Set-Methode, CNC-Frasen, Fertigungs-
restriktionen
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Abstract

The optimization of mechanical structures is becoming increasingly important
in the development of technical products. The goal of this process is to find out
what shape and topology a structure must adopt to fulfill its design objective in
the best possible way. For example, with the help of optimization methods, it is
possible to determine in a targeted manner how far the weight of a structure can
be reduced without falling below the minimum requirements for its mechanical
properties. The result of such a process is an optimized structure. In order to
guarantee the manufacturability of the optimized structures, current research is
striving to integrate information about the manufacturing processes in the form
of manufacturing constraints directly into the related optimization methods.

In this work, a methodology for integrating the manufacturing constraints of 3D
milling processes into level set based topology optimization is developed. The
constraints considered are ensuring tool accessibility of each machining point and
maintaining a minimum wall thickness. The approach followed is based on the
induction of structural growth in areas that are either inaccessible or too thin.
To identify these areas, a method is developed in which the level set function
is interpolated along the outer contours of realistic tool geometries, considering
available machining directions. A potential is defined in regular steps for the
subsequent induction of structural growth. This potential has greater values inside
the structure than outside and changes linearly normal to the structural boundary.
Minimization of the potential present on the structural boundary is converted
into structural growth. For this purpose, the sensitivities of the potential with
respect to deformations of the structural boundary are determined and coupled
with the evolution velocities of the corresponding level set function. In the course
of this approach, both manufacturing constraints are transformed into a single
mathematical constraint and explicitly integrated into the optimization problem.

Keywords: Topology optimization, Level Set Method, CNC milling, Manufactu-
ring constraints
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1 Einleitung

1.1 Problemstellung und Maotivation

Das Bestreben nach Verbesserung, vielmehr zur Optimierung, wird in zahlreichen
Fragestellungen aus einem umfassenden Anwendungsspektrum verfolgt. Haufig
entspringen diese Anwendungen den Wirtschaftswissenschaften, den Datenwissen-
schaften (englisch: Data Science), der Verkehrsforschung oder technischen Sach-
verhalten. In die letztere Kategorie reiht sich auch die Optimierung mechanischer
Strukturen ein. Schon in der Architektur der romischen Antike finden sich Struk-
turen bzw. Bauwerke, die sich durch eine duflerst ,effiziente’ Bauweise auszeichnen.
Ein prominenter Vertreter ist die Kuppel des Pantheons in Rom (125 n. Chr.), die,
wie Ottoni und Blasi (2016) erldutern, durch ihre spezifische Form selbsttragende
Eigenschaften erhélt und damit deren Belastung besonders ,gut‘ aufnehmen kann.
Solche Strukturen konnen heute durch Strukturoptimierungen gefunden werden.
Strukturoptimierungen verfolgen die Fragestellung, welche Struktur die an sie
gestellte Konstruktionsaufgabe bestmoglich erfiillt. Diese werden insbesondere in
der Automobilindustrie sowie der Luft- und Raumfahrtindustrie betrieben. Eine
wichtige Teildisziplin der Strukturoptimierung ist die Topologieoptimierung.

In der Topologieoptimierung mechanischer Strukturen werden Bauteile durch
zielgerichtete Forméanderungen bei gleichzeitiger Ausbildung von Lochern oder
der Verschmelzung vorhandener Locher verbessert. Dies geschieht iiber mehrere
[terationen so lange, bis ein Optimierungsziel erreicht und einzuhaltende Neben-
bedingungen erfiillt sind. Eine Optimierungsaufgabe konnte z. B. lauten, dass ein
Bauteil eine besonders hohe Steifigkeit annehmen und gleichzeitig seine Masse auf
einen vorgegebenen Zielwert verringert werden soll (Schumacher 2020). Findet man
ein solches Optimum, stellt sich die Frage, wie eine folgende Fertigung gelingen
kann. In den Basismethoden der Topologieoptimierung werden keine Informationen
iiber anschlielende Fertigungsverfahren berticksichtigt. Die optimierten Strukturen
sind daher in den meisten Fallen nicht herstellbar. Jedes Fertigungsverfahren stellt
geometrische Anforderungen bzw. Fertigungsrestriktionen an die zu fertigenden
Strukturen. Sind diese nicht erfiillt, misste die optimierte Struktur manuell so weit
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verandert werden, bis die spezifischen Fertigungsrestriktionen erfillt sind. Dies
birgt aber folgende Probleme: Zum einen wird durch jede Strukturveranderung
das gefundene Optimum verlassen. Zum anderen wiren solche Anderungen stark
von der Interpretation des Anwenders abhéngig. Wie wichtig ist z. B. eine einzelne
Verstrebung? Kann diese verschoben oder gar entfernt werden? Ist die Losung
immer eindeutig? Wenn nicht, welche Losung ist die Beste? Um diesen Prozess zu
vermeiden, gibt es in der aktuellen Forschung ein grofles Bestreben, Fertigungsre-
striktionen direkt in die Verfahren der Topologieoptimierung zu integrieren.

Im Zuge dieser Arbeit wird untersucht, wie sich die Fertigungsrestriktionen von
Frasverfahren in die Topologieoptimierung mit der Level-Set-Methode integrieren
lassen. Dies umschliefit die Gewéhrleistung der Werkzeugzuganglichkeit unter Be-
riicksichtigung realistisch geformter Fraswerkzeuge an allen Bearbeitungspunkten
der Strukturoberflache. Dartiber hinaus wird untersucht, wie wahrend der Opti-
mierung die Einhaltung einer Mindestwandstéarke gelingen kann. Das Ziel dieser
Arbeit ist, dass durch Integration der Fertigungsrestriktionen Strukturen optimiert
werden konnen, die stets ohne anschliefende manuelle Strukturveranderungen
frasbar sind. Informationen zu Werkzeuggeometrien, Bearbeitungsrichtungen und
Mindestwandstarken sollen in Form von Eingabeparametern beriicksichtigt werden
konnen.

1.2 Aufbau der Dissertation

In Kapitel [2| wird zunéchst eine kurze Einfiihrung in die Grundlagen der Struktur-
optimierung gegeben. Dem folgend wird das Fertigungsverfahren Friasen mitsamt
den verfahrensspezifischen Fertigungsrestriktionen vorgestellt. Darauthin werden
die bisher erfolgten Forschungsarbeiten im Bereich der Integration von Fertigungs-
restriktionen von Frasverfahren in die Strukturoptimierung vorgestellt. In Kapitel
wird die Topologieoptimierung mit der Level-Set-Methode im Detail erlautert.
Zur Demonstration des Verfahrens werden exemplarische Strukturoptimierungen
durchgefiithrt. Mit Kapitel |4] beginnt die Darstellung der Forschungsergebnisse.
Darin wird das entwickelte Verfahren zur Integration der Fertigungsrestriktionen
in die Topologieoptimierung mit der Level-Set-Methode hergeleitet. Das Verfahren
wird in Kapitel 5| an verschiedenen Strukturoptimierungsbeispielen demonstriert.
Es wird explizit ausgearbeitet, wie die Fertigungsrestriktionen die Optimierungser-
gebnisse beeinflussen. Abschlielend werden die Inhalte dieser Arbeit in Kapitel
6] zusammengefasst und ein Ausblick zu weiterfithrenden Forschungsansitzen
gegeben.
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Als Einfiihrung wird zunéachst das Konzept der Strukturoptimierung vorgestellt,
wobei fiir den weiteren Verlauf der Arbeit wichtige Begriffe eingefithrt und kurz
beschrieben werden. Das Hauptaugenmerk liegt dabei auf der Topologieoptimie-
rung.

Anschlielend wird das Fertigungsverfahren Frasen vorgestellt und der Begriff des
3D-Frasens prazisiert. Dabei werden die Fertigungsrestriktionen des Verfahrens
erlautert. Darauf folgend wird eine Literaturiibersicht zu thematisch angesiedelten
Forschungsarbeiten gegeben und deren Ergebnisse kurz beschrieben.

2.1 Einfiihrung in die Strukturoptimierung

Unter der Optimierung mechanischer Strukturen bzw. der Strukturoptimierung
versteht man im Allgemeinen die Verbesserung der Struktureigenschaften eines
Bauteils (Schumacher 2020). Welche konkreten Eigenschaften verbessert werden
sollen, wird im Optimierungsziel (Zielfunktion) und den einzuhaltenden Neben-
bedingungen (Restriktionen) formuliert. Strukturoptimierungen miissen dabei
nicht rein mechanischer Natur sein, sondern kénnen auch unter dem Einfluss
fertigungstechnischer oder wirtschaftlicher Gesichtspunkte definiert werden.

2.1.1 Begriffsdefinitionen

Grundlegende Begriffe im Zusammenhang mit der Optimierung mechanischer
Strukturen werden in Tabelle eingefiihrt und erlautert. Die tabellarische
Darstellung lehnt sich an Dienemann (2018) und Ramsaier (2021)) an.
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Tabelle 2-1: Einfiihrung und Definition wichtiger Begriffe der Strukturoptimierung nach
Dienemann (2018)) und Ramsaier (2021))

Begriff Erklarung

Struktureigenschaft Eine der Struktur zuordenbare Grofle oder Eigenschaft
wie z. B. das Volumen, die Masse oder die Steifigkeit

Entwurfsvariable, Parameter, die zum Erreichen des Optimierungsziels va-

Designvariable riiert werden wie z. B. Wandstarken oder Materialeigen-
schaften

Strukturmodell Mathematische Beschreibung des Strukturverhaltens. Ab-

héngig von den Entwurfsvariablen kann dies z. B. eine
analytische Formulierung oder ein Finite-Elemente-Netz
sein

Entwurfsraum, Desi- Geometrischer Raum, in dem die Losung des Optimie-

gnraum rungsproblems liegen darf. Die Designraumgrenzen sind
gleichzeitig die maximal méglichen Abmafle der Struktur

Zielfunktion Mathematische Beschreibung des Optimierungsziels in
Form einer zu minimierenden oder zu maximierenden
Funktion

Restriktion Bei der Optimierung einzuhaltende Nebenbedingung. Hau-

fig wird das Erreichen eines spezifischen Gewichts gewéhlt

Fertigungsrestriktion Auf die Fertigung bezogene Restriktion, die abhéngig
vom Fertigungsverfahren die Vorgabe spezifischer geome-
trischer Anforderungen an die Struktur beinhaltet

Optimierungsproblem Mathematische Beschreibung einer Optimierungsaufgabe.
Das Ziel ist die Minimierung oder Maximierung einer Ziel-
funktion unter der Einhaltung vorgegebener Restriktionen

Optimierungs- Methode zum Erreichen des Optimierungsziels wie z. B.
algorithmus die Methode des steilsten Abstiegs
Sensitivitat Ma8 fiir die Anderung einer Struktureigenschaft bei Va-

riation einer Entwurfsvariablen

2.1.2 Arten der Strukturoptimierung

Nach Schumacher (2020) wird die Strukturoptimierung abhéngig von den ver-
wendeten Entwurfsvariablen in verschiedene Optimierungsarten kategorisiert. In
Abbildung ist gezeigt, dass die Klassifizierung nach insgesamt fiinf unterschied-
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lichen Varianten der Strukturoptimierung maoglich ist. Dazu gehoren die Wahl der
Strukturbauweise, die Wahl der Materialeigenschaften, die Topologieoptimierung,
die Formoptimierung sowie die Dimensionierung der Strukturelemente.

Wahl der Bauweise:

Wahl der Materialeigenschaften:

Aluminium Stahl Verbundwerkstoffe
Topologieoptimierung:
Formoptimierung;:
Dimensionierung:
A 2 5 4 4 A

Abbildung 2—1: Varianten der Strukturoptimierung, modifiziert nach Schumacher (2020))

Wahl der Bauweise

Eine Optimierung durch die Wahl der Bauweise gilt als vergleichsweise allgemeine
Optimierungsart. Als Beispiel fiir verschiedene Strukturbauweisen erlautert Klein
(2013), dass Flugzeugriimpfe prinzipiell als Fachwerkstrukturen, Vollwandsysteme
oder Schalensysteme gebaut werden kénnen.

Wahl der Materialeigenschaften
Auch die Materialeigenschaften konnen als Entwurfsvariablen betrachtet werden. Je
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nach Optimierungsproblem werden unterschiedlichste Materialeigenschaften bevor-
zugt und durch eine darauf angepasste Werkstoffauswahl die Struktureigenschaften
verbessert.

Topologieoptimierung

Der Begriff ,Topologie* leitet sich von den griechischen Wortern topos (76mog)
,Ort, Lage und logos (Adyos) ,Wort“ ab und kann als Lehre iiber den raumlichen
Zusammenhang geometrischer Objekte interpretiert werden. Ubertragen auf die
Topologieoptimierung mechanischer Strukturen wird hier das Ziel verfolgt, die
Lage und Anordnung der Strukturelemente zu verbessern.

Monastyrsky (1987) illustriert, dass Strukturen gleicher topologischer Eigenschaf-
ten solche sind, deren Formen durch Verformungsoperationen wie Dehnen und
Stauchen ineinander tiberfiihrt werden konnen, ohne die Strukturen lokal ausein-
anderzureiffen oder zu verschmelzen. Eine Pyramide und ein Wiirfel sind demnach
topologisch dquivalent.

Die Topologieoptimierung gilt nach Harzheim (2008) als flexibelste Art der Opti-
mierung. In der Regel wird diese jedoch in Kombination mit einer Formoptimierung
durchgefiihrt.

Formoptimierung

Das Ziel der Formoptimierung ist, durch eine Variation der Strukturrinder eine
Optimierungsaufgabe zu 1osen. Die Deklaration der formbeschreibenden Entwurfs-
variablen stellt einen Schwerpunkt solcher Optimierungen dar. Eine verbreite
Vorgehensweise ist die CAD-basierte (Computer Aided Design) Formoptimie-
rung. Dabei werden die CAD-Parameter als Entwurfsvariablen definiert und zum
Erreichen des Optimierungsziels variiert.

Dimensionierung

Werden geometrische Eigenschaften der Strukturelemente, wie z. B. die Stab-
durchmesser in Fachwerkstrukturen als Entwurfsvariablen deklariert, kann eine
Optimierung der Struktur durch eine Variation dieser ausgewéhlten geometrischen
Eigenschaften durchgefiihrt werden.
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2.1.3 Verfahren der Topologieoptimierung

Im Zuge dieser Arbeit wird die Strukturoptimierung in Form der Topologieoptimie-
rung realisiert. Mit den von Michell (1904)) entdeckten und nach ihm benannten
Michell-Strukturen erstreckt sich die Geschichte der Topologieoptimierung bereits
auf iber 100 Jahre und hatte ihre erste Anwendung in der Optimierung von
Stabwerken. Im Zuge umfangreicher Forschungsarbeiten und der Entwicklung
von leistungsstarken Computern sind zahlreiche effiziente Optimierungsverfahren
entstanden, die auch heute noch fortlaufend weiterentwickelt werden. Zhang und
Zhu (2018) geben eine Zusammenfassung der populdrsten Verfahren und deren
Funktionsweisen.

Ein besonderes Merkmal der Topologieoptimierung ist, dass im Vergleich zu den
anderen Varianten der Strukturoptimierung sehr viele Entwurfsvariablen ver-
teilt iber den gesamten Entwurfsraum benotigt werden. Wie Schumacher (2020)
beschreibt, werden die zu optimierenden Strukturen im einfachsten Fall durch
Finite-Elemente diskretisiert. Diesen Strukturelementen wird jeweils mindestens
eine Entwurfsvariable zugeordnet. Durch eine Variation des Materialverhaltens
iiber die zugeordneten Entwurfsvariablen wird die Topologie schliefSlich optimiert.
Zwei populdre Vertreter unter den Verfahren der Topologieoptimierung sind einer-
seits die Dichtemethode — haufig auch Voxel-Methode genannt — und anderseits
die Topologieoptimierung mit der Level-Set-Methode.

Dichtebasierte Topologieoptimierung

Die Grundlage der dichtebasierten Topologieoptimierung besteht in der Verkniip-
fung des Elastizitdtsmoduls mit der Materialdichte. Dazu wird jedem Strukturele-
ment ¢ eine auf eins normierte Dichte als Entwurfsvariable zugewiesen und auf
den Elastizitdtsmodul interpoliert. Das Ziel ist, eine optimierte Massenverteilung
durch eine Variation der normierten Dichten zu bestimmen. Diese sollen entweder
den Wert 1 (massives Material) oder 0 (kein Material) annehmen.

Die dabei am héufigsten eingesetzte Materialinterpolation ist SIMP (Solid Isotro-
pic Material with Penalization). Nach Harzheim (2008)) und Zhou und Rozvany
(1991)) werden dabei die Elastizitatsmodule E; iiber einen Exponentialansatz aus
den normierten Dichten Z; bzw. den korrespondierenden Materialdichten p; fiir
isotropes Werkstoffverhalten interpoliert. Bezeichnet man den Elastizitatsmodul
des massiven Materials mit EY und dessen Materialdichte mit p?, gilt fiir den
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interpolierten Elastizitatsmodul

Pi
0

7

E;=E)% mit 7; = und s> 1. (2-1)
Der Strafexponent s dient der ,Bestrafung’ von potenziellen Zwischendichten. Diese
sind physikalisch nicht interpretierbar. Je grofier der Wert des Strafexponenten
ist, desto starker werden bei Optimierungen gewtinschte Dichten von 0 oder 1
ausgebildet. In der Praxis wird der Exponent haufig auf den Wert 3 gesetzt, um
einerseits die Ausbildung von Zwischendichten zu vermeiden und anderseits die
Entstehung von schwachen lokalen Minima zu unterbinden (Dienemann 2018).
Die Dichtemethode ist in vielen kommerziellen Finite-Elemente-Softwarepaketen
integriert und in der industriellen Praxis weit verbreitet.

Level-Set-Optimierung

Eine weitere Moglichkeit der Topologieoptimierung bietet sich nach Wang et al.
(2003) und Allaire etal. (2004) durch die Zuhilfenahme der Level-Set-Methode
an. Dabei wird die zu optimierende Struktur implizit als Nullstellenmenge einer
hoherdimensionalen Level-Set- Funktion beschrieben. Zur Veranschaulichung dieses
Zusammenhangs dient folgende Analogie am Beispiel einer Kreisfliche: Nimmt
man ein kegelformiges Sieb und taucht dieses mit der Spitze voran lotrecht in ein
Wasserbecken ein, fiillt sich der Kegel mit Wasser. Die Wasseroberflache stellt in
der Analogie das Nullniveau der Level-Set-Funktion dar. Der Teil des Kegels, der
die Wasseroberflache schneidet, liegt auf einem Kreis bzw. der Nullstellenmenge
der Level-Set-Funktion. Der Anteil der Wasseroberflache innerhalb des Kegels
stellt eine Kreisflache dar. Im Kontext der Topologieoptimierung entspricht die
Kreisfliche der zu optimierenden Struktur. Im Gegensatz zur Dichtemethode lauft
hierbei die Optimierung auf eine Verschiebung des Strukturrandes mithilfe einer
iiber den Entwurfsraum definierten Entwicklungsgeschwindigkeit hinaus. Man
nennt diesen Prozess héufig Strukturentwicklung. Im Sinne der vorherigen Analogie
fithrt z. B. ein tieferes Eintauchen des Kegels in das Wasser zu einer Vergroflerung
der innen liegenden Kreisflache bzw. zu einem gleichméafligen Strukturwachstum.
Ein Vorteil der Level-Set-Methode gegeniiber der Dichtemethode ist, dass durch
die mathematische Beschreibung des Strukturrandes in Form einer Nullstellen-
menge jederzeit glatte und klar definierte Randkonturen entstehen. Dijk et al.
(2013) betonen jedoch, dass die Resultate der Optimierungen signifikant von den
Startentwiirfen abhéngen. Das Verfahren wird in Kapitel [3] detailliert fiir den
weiteren Verlauf dieser Arbeit vorgestellt.
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2.2 Fertigungsverfahren Frasen

2.2.1 Definition und Einordnung des Verfahrens

Das Frdsen gehort zur Gruppe der spanabhebenden Fertigungsverfahren. In der
DIN 8580 (2003)) wird die Zerspanung als Prozess definiert, bei dem eine Re-
lativbewegung zwischen Werkzeug und Werkstiick zu einer Verminderung des
Materialzusammenhalts und damit zu einer Forménderung des Werkstiicks fiihrt.
Klocke (2018)) beschreibt, dass beim Frésen die Zerspanung mit geometrisch be-
stimmter Schneide unter einer kreisférmigen Schnittbewegung erfolgt. Geometrisch
bestimmt bedeutet, dass die Schneidenanzahl, deren Geometrie und Lage bekannt
sind. Im Gegensatz dazu steht das Spanen mit geometrisch unbestimmter Schnei-
de. Dazu zéhlt zum Beispiel das Schleifen. In DIN 8589-3 (2003)) wird weiter
spezifiziert, dass bei der Frasbearbeitung die Vorschubbewegung senkrecht und
schrég zur Drehachse des Werkzeugs liegen kann. Auflerdem wird in der Norm das
Fertigungsverfahren abhéngig von den zu erzeugenden Geometrien, der Werkzeug-
form und der Bearbeitungskinematik in die insgesamt sechs folgenden Varianten
gegliedert:

o Planfrasen

o Rundfrisen

e Schraubfrasen
o Walzfrasen

o Formfréasen

o Profilfrasen

2.2.2 Charakterisierung des 3D-Frasens

Die Frasbearbeitung raumlicher Flachen bzw. Strukturen wird unter der Kate-
gorie Formfrasen zusammengefasst und im weiteren Verlauf auch als 3D-Frdisen
bezeichnet. Dietrich (2016) erlautert, dass mithilfe des Formfrasens sehr komplexe
Strukturen gefertigt werden konnen, deren Hauptanwendungen im Werkzeug-
und Formenbau, der Automobilindustrie, dem Maschinenbau und der Luft- und
Raumfahrtindustrie liegen.

Fir das 3D-Frésen werden in der industriellen Praxis meistens CNC-Bearbeitungs-
zentren (Computerized Numerical Control) genutzt. Kief et al. (2020) definieren
ein Bearbeitungszentrum als eine in mindestens drei Achsen numerisch gesteuerte
Werkzeugmaschine, die iiber eine automatisierte Werkzeugwechselvorrichtung und
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ein integriertes Werkzeugmagazin verfiigt und damit diverse Zerspanaufgaben
durchfithren kann. Wie Heisel et al. erlautern, werden auch konventionelle
Frasmaschinen mit integriertem Werkzeugmagazin und integrierter CNC-Steuerung
vertrieben. Von daher wird im weiteren Verlauf nicht mehr zwischen Bearbeitungs-
zentrum und Frasmaschine unterschieden.

(a) 3-Achs-Bearbeitung (b) 4-Achs-Bearbeitung

Fraswerkzeug

%,

Q
Lfy
J@O é

o

o+ A
A

Achsenbezeichnungen

Abbildung 2-2: Unterschiedliche Kinematiken bei 3-Achs-, 4-Achs- und
5-Achs-Frasmaschinen, modifiziert nach Kief et al. (2020)

Fiir Formfrasarbeiten werden Maschinen mit mindestens drei Linearachsen beno-
tigt. Das Fraswerkzeug kann entlang dieser Achsen bewegt werden. Man bezeichnet
solche Maschinen auch als 3-Achs-Maschinen. Wie in Abbildung 2—2h gezeigt,
werden die drei Achsen mit x, y und z bezeichnet, wobei die z-Achse gleichzeitig
die Spindelachse représentiert (Dangel (2020)). Mithilfe von 3-Achs-Maschinen
kann ohne Umspannvorgang immer nur eine Seite eines Wiirfels bearbeitet werden.
Fiir eine Bearbeitung aller sechs Wiirfelseiten sind insgesamt sechs Maschinen-
spannvorgange notig.

Aufgrund der vielfdltigeren Kinematik koénnen mit 4-Achs- oder auch 5-Achs-
Friasmaschinen deutlich komplexere Strukturen hergestellt werden. Wie in Abbil-
dung und gezeigt, besitzen solche Maschinen eine bzw. zwei zusétzliche
Drehachsen die mit A, B und C bezeichnet werden. Kief et al. erlautern,
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dass dies technisch entweder durch einen drehbaren Maschinentisch, ein drehbares
Werkzeug oder einer Kombination aus beidem realisiert wird. Nach Dangel (2020)
kann mit 4-Achs-Maschinen ein Wiirfel von vier Seiten ohne Umspannvorgang
bearbeitet werden. Bei 5-Achs-Maschinen ist die Bearbeitung von fiinf Wiirfelseiten
ohne Umspannen moglich.

2.3 Fertigungsrestriktionen am Beispiel der
3-Achs-Bearbeitung

Geometrische Anforderungen, die eine Struktur zur Gewéhrleistung ihrer Her-
stellbarkeit zwingend einhalten muss, werden als harte Fertigungsrestriktionen
bezeichnet. Neben harten Restriktionen lassen sich auch weiche Fertigungsrestrik-
tionen definieren. Bei der Verletzung von weichen Restriktionen, ist die Fertigung
der Struktur grundsatzlich moglich, jedoch steigen abhangig vom Grad der Re-
striktionsverletzung die Fertigungszeit und damit auch die Produktionskosten an.
In dieser Arbeit wird die Integration der nachfolgenden zwei Fertigungsrestriktionen
beim 3D-Frésen am Beispiel der 3-Achs-Bearbeitung in die Topologieoptimierung
untersucht:

1. Jeder Bearbeitungspunkt einer herzustellenden Struktur muss fiir ein vorge-
gebenes Fraswerkzeug unter Berticksichtigung der Geometrien von Werkzeug,
Werkzeugaufnahme und Hauptspindel sowie aller nutzbaren Bearbeitungs-
richtungen zuganglich sein.

2. Die Wandstérken der herzustellenden Strukturen diirfen einen vorgegeben
minimalen Wert nicht unterschreiten.

Die erste Restriktion ist eine harte Fertigungsrestriktion, die fiir alle spanenden
Fertigungsverfahren erfiillt sein muss, wahrend die Einhaltung einer Mindestwand-
starke als weiche Fertigungsrestriktion klassifiziert werden kann. Im Folgenden
werden die Restriktionen im Detail erlautert und motiviert.

2.3.1 Vermeidung unzuganglicher Bearbeitungspunkte

Hinterschneidungen und Werkzeugkollisionen

In Abbildung ist verdeutlicht, wodurch die Zuganglichkeit der Strukturober-
flache fiir ein Fraswerkzeug eingeschrankt werden kann. Dazu ist eine Struktur
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y Rohteilkontur

-
o/ (a)

-y
(c)
Yy
Lﬁ”
Maschinentisch

[] Struktur 8 Kollision
Unzugénglicher Bereich Zuganglich aus —z-Richtung

I:> Mogliche Bearbeitungsrichtung ‘ Aktive Bearbeitungsrichtung

Abbildung 2-3: Einschréinkung der Werkzeugzugénglichkeit durch Hinterschneidungen
und Kollisionen bei tief liegenden Oberflachenbereichen

abgebildet, die aus einem Rohteil mithilfe des skizzierten Werkzeugs gefertigt wer-
den soll. Abhéngig von der Einspannung des Werkstiicks auf dem Maschinentisch
konnen verschiedene Seiten der Struktur bearbeitet werden. Im weiteren Verlauf
wird dies durch die Einfiihrung von Bearbeitungsrichtungen beriicksichtigt. Eine
um 90° im Uhrzeigersinn gedrehte Einspannung des Werkstiicks kommt einer Bear-
beitung aus der eingezeichneten +x-Bearbeitungsrichtung gleich. Demzufolge kann
die Bearbeitung aus vier verschiedenen Bearbeitungsrichtungen (—x, +x, —y, +v)
erfolgen. (Im 3D stehen sechs Bearbeitungsrichtungen zur Verfiigung.) Im Beispiel
sind fiir die aktive Bearbeitungsrichtung drei Bereiche der Strukturoberflache
unzuganglich.

Die Hinterschneidungen in den Bereichen a) und b) sind aus allen verfiigharen
Bearbeitungsrichtungen unzuganglich, wihrend der Bereich ¢) durch die Hinzu-
nahme einer weiteren Bearbeitungsrichtung (—z) erreicht werden kénnte.
AuBlerdem wird an Bereich b) deutlich, dass die Zugénglichkeit nicht nur durch
Hinterschneidungen, sondern auch durch sehr tiefe und steile Oberflichenbereiche
eingeschrankt werden kann. Diese tief liegenden Bereiche konnen aufgrund von ent-
stehenden Kollisionen zwischen der Werkzeughalterung und der Strukturoberfléache

nicht erreicht werden.
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Diinne Aussparungen und konkave Hinterschneidungen

Die Zuganglichkeit der Strukturoberfliche kann auch durch zu grofle Radien des
Fraswerkzeugs eingeschrankt sein. In Abbildung ist zur Veranschaulichung ein
Fraswerkzeug mit dem Radius r,, in seiner Vorderansicht (links) gezeichnet, das
zur Fertigung zweier unterschiedlicher Beispielstrukturen eingesetzt werden soll.
In den dazugehorigen Draufsichten sind durch die eingezeichneten Schraffierungen
die Bereiche gekennzeichnet, in denen Material abgetragen werden soll.

In der mittleren Struktur ist zu erkennen, wie durch eine lokale, hohe konkave
Kriimmung der Strukturoberfliche unzugangliche Bereiche entstehen kénnen. Choi
(2001)) bezeichnet diese Bereiche auch als konkave Hinterschneidungen. Daneben
zeigt die rechte Struktur, dass die minimale Breite von Aussparungen mindestens
dem Durchmesser des Werkzeugs entsprechen muss. Die Werkzeughalterung ist
nicht in der Abbildung eingezeichnet. Fiir diese gelten jedoch ebenfalls die zwei
verdeutlichten Restriktionen.

Vorderansicht Draufsicht Draufsicht
/\//
_> <—
2rw .|
21w

Konkave Hinterschneidung Zu dinner Spalt

[ ] Struktur 8  Kollision Materialabtrag

Abbildung 2—-4: Einschrankung der Werkzeugzugéanglichkeit durch zu grofie
Werkzeugradien

2.3.2 Vermeidung diinnwandiger Strukturen

Die Frasbearbeitung diinnwandiger Strukturen ist insbesondere in der Luft- und
Raumfahrtindustrie sowie der Automobilindustrie von grofler Bedeutung. Die
Fertigung solcher Strukturen ist jedoch nur unter erhohtem Arbeits- und Kos-
tenaufwand moglich. Aus diesem Grund wird in zahlreichen Forschungsarbeiten
untersucht, welche Faktoren die Fertigung diinnwandiger Strukturen erschweren
und wie sich diese reduzieren lassen.

Zawada-Michalowska et al. (2020)) erlautern, dass die durch das Werkzeug auf das
Werkstiick aufgebrachten Kréfte zu elastischen Verformungen der diinnwandigen
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Strukturen fiihren. Diese Verformungen induzieren Vibrationen im Werkstiick
sowie im Werkzeug, die zu der Entstehung von Form- und Maffehlern fiithren.
Dabei erhoht sich zuséatzlich der Werkzeugverschleif3.

Zawada-Michatowska et al. betonen auflerdem, dass durch den Zerspanprozess
bei diinnwandigen Strukturen erhéhte Eigenspannungen im Werkstiick entstehen.
Wie experimentell von Zhang et al. (2012) gezeigt, liegt dies zum einen an den
plastischen Verformungen des Werkstiicks im Eingriffsbereich der Werkzeugschnei-
den und zum anderen an den wihrend des Spanprozesses entstehenden hohen
Temperaturgradienten. Letztere konnen thermische Spannungen erzeugen, die
iiber der Streckgrenze des Werkstoffs liegen. Die entstehenden Eigenspannungen
konnen zwar durch anschlieSfende Warmebehandlungen reduziert werden, diese
fithren jedoch haufig zu Verformungen des Werkstiicks.

In einer Studie zeigen Sridhar und Ramesh Babu (2015), dass zur Reduktion
dieser Effekte eine Verringerung des Werkzeugdurchmessers beitragen kann. Bolar
und Joshi (2021)) zeigen, dass hohe Schnittkrifte die Ausbildung plastischer Ver-
formungen begiinstigen. Diese konnen durch eine Reduktion des Vorschubs, der
Schnittbreite und der Schnitttiefe reduziert werden. In der Folge steigen jedoch
die Produktionszeit und die Herstellungskosten.

2.4 Forschungsarbeiten zur Optimierung frasbarer
Strukturen

Forschungsbestrebungen zur Optimierung frasbarer Strukturen unterliegen seit
einigen Jahren einer immer stéarker anwachsenden Popularitiat. Daher lassen sich
einige Publikationen finden, in denen mogliche Losungsansatze entwickelt und
diskutiert werden. Die dabei entwickelten Methoden sind entweder fiir die Dichte-
methode oder die Level-Set-Methode ausgearbeitet worden. Im Folgenden werden
diese kurz vorgestellt.

2.4.1 Gewadhrleistung der Werkzeugzuganglichkeit

Als Erweiterung der Dichtemethode entwickeln Guest und Zhu (2012), Chen et al.
(2016)) und Vatanabe et al. (2016) Projektionsmethoden, mit der die Sichtbarkeit
von Randelementen aus vordefinierten Richtungen untersucht werden kann. Wie
in Abbildung verdeutlicht, gilt ein Randelement als sichtbar, wenn alle Ele-
mentdichten entgegen dessen Beobachtungsrichtung kleiner als die des tiberpriiften
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Randelement sichtbar —

Beobachtungsrichtung <«——

Pi Pit1 - Pn
M-
Randelement nicht sichtbar - Beobachtungsrichtung I:l p=0

Pi Pit1 - Pn

Abbildung 2-5: Projektionsmethode zur Uberpriifung der Sichtbarkeit von
Randelementen, modifiziert nach Chen etal. (2016))

Randelements sind. Uberfithrt in eine mathematische Restriktion, muss fiir n
Elemente entgegen der gewédhlten Beobachtungsrichtung gelten

Pi Z Pit1 Z o = P (2-2)

Die entwickelten Projektionsmethoden kénnen dazu genutzt werden, Hinterschnei-
dungen zu lokalisieren und diese wahrend der Optimierung zu entfernen. Wahrend
Guest und Zhu (2012) das Werkzeug als Zylinder mit aufgesetzter Halbkugel
modellieren, werden in den anderen genannten Arbeiten keine Geometrien des
Werkzeugs oder dessen Werkzeughalterung berticksichtigt. Lee et al. (2022) haben
die von Guest und Zhu (2012) entwickelte Projektionsmethode um die Berticksich-
tigung von 5-Achs-Kinematiken erweitert. In der Arbeit werden die Entwurfsva-
riablen nicht als einzelne normierte Elementdichten, sondern als Zusammenhang
einer Menge benachbarter Elementdichten betrachtet. Pro Element werden alle
Elementdichten zusammengefasst, die sich bei einem Werkzeugkontakt inner-
halb der Auflenkonturen des Werkzeugs befinden wiirden. So entstehen bei einer
Optimierung neue Leerstellen immer in Form des modellierten Werkzeugs. Bei
5-Achs-Bearbeitungen werden die Elementgruppierungen fiir alle moglichen Be-
arbeitungsrichtungen wiederholt und anschlieend tiber eine Projektionsfunktion
gekoppelt.

Langelaar (2019) entwickelt einen Sensitivitétenfilter zur Integration der Ferti-
gungsrestriktion. Die Basis des Filters besteht in der kumulativen Summation
von Elementdichten in eine Bearbeitungsrichtung. 5-Achs-Verfahren kénnen durch
Rotationen der Struktur in die vorhandenen Bearbeitungsrichtungen und der
anschlieBenden Bildung einer gemeinsamen Schnittmenge kumulativ summierter
Elementdichten berticksichtigt werden. Die Werkzeuglange sowie die Form der
Werkzeugspitze konnen bei dem Verfahren beliebig gewéhlt werden.



16 2 Stukturoptimierung von frasbaren Bauteilen

Mirzendehdel et al. (2020) leiten zur Integration der Zuginglichkeitsrestriktion
ein skalares Feld her, das an allen Punkten des Entwurfsraums ein Maf fiir deren
Unzugéanglichkeit angibt. Die Minimierung der unzugénglichen Strukturbereiche
geschieht durch eine Kopplung der Sensitivitaten mit dem skalaren Feld. Die
Fertigungsrestriktion wird explizit in das Optimierungsproblem integriert.

Unter Zuhilfenahme der Level-Set-Methode stellen Liu und Ma (2015]) ein Ver-
fahren zur Optimierung 2.5D-frasbarer Strukturen vor. 2.5D bedeutet, dass bei
der Bearbeitung die z-Achse nicht simultan mit der z- und y-Achse bewegt wird
(Dangel [2020). Diese Frasstrategie wird haufig zur Fertigung von Bauteilen mit
senkrecht zueinander ausgerichteten Flachen verwendet. Die Grundidee des ent-
wickelten Verfahrens ist, die Strukturentwicklung so zu beeinflussen, dass die
optimierten Strukturen nur aus vordefinierten, herstellbaren geometrischen Grund-
formen besteht. Dies konnen Quader, Bohrungen oder einfache Freiformflédchen
sein. Mit der Methode der kleinsten Quadrate wird die Optimierung lokal auf die
Ausbildung der am besten passendsten Formen ausgerichtet.

Morris et al. (2020) untersuchen erstmals eine Integration der Zuganglichkeitsre-
striktion fir das 3D-Friasen unter Anwendung der Level-Set-Methode. Dabei wird
das Werkzeug in Form von zwei Halbkugeln und zwei Zylindern modelliert. Zur
Erfilllung der Zuganglichkeitsrestriktion wird eine Filterung der Entwicklungsge-
schwindigkeiten untersucht. Dabei werden Geschwindigkeiten, die zur Ausbildung
von Hinterschneidungen fithren, herausgefiltert. Um zu erkennen, an welchen Stellen
diese Filterung stattfinden muss, nutzen die Autoren einen klassischen Raycast-
Algorithmus. Dazu wird jeder Punkt der Strukturoberfliche als Strahlenquelle
deklariert, die Strahlen (englisch: Ray) entgegengesetzt zur Bearbeitungsrichtung
erzeugen. Besitzt ein Strahl einen Schnittpunkt mit dem zugrunde liegenden
FE-Netz, ist der betrachtete Punkt unzugénglich. Infolge der Filterung wird
auf dem gesamten Strukturrand ein Strukturwachstum unterdriickt. In der Ver-
offentlichung wird betont, dass dadurch schwache lokale Minima entstehen konnen.

Deng et al. (2022) untersuchen eine CAD-basierte Form der Optimierung frasbarer
Strukturen. Die Basis des Verfahrens besteht darin, den schrittweisen Materi-
alabtrag wahrend des Fertigungsprozesses durch parametrisierte Volumina zu
beschreiben. Diese werden als zweidimensionale kubische Splines erzeugt und
schlielich zu Volumenkorpern extrudiert, die aus dem Startentwurf entfernt wer-
den. Die Form der Volumina und deren Position sind abhéngig von der parallel
stattfindenden Topologieoptimierung. Das Werkzeug wird als unendlich langer
Zylinder mit einem halbkugelférmigen Werkzeugkopf modelliert.



2.4 Forschungsarbeiten zur Optimierung frasbarer Strukturen 17

2.4.2 Gewadhrleistung minimaler Wandstarken

In den zuvor zitierten Publikationen wird lediglich die Zugéanglichkeitsrestriktion
ohne Einbezug minimaler Wandstarken beriicksichtigt. Wie die Einhaltung einer
Mindestwandstarke gelingen kann, wird jedoch in eigenstandigen Forschungsarbei-
ten untersucht.

Sigmund und Petersson (1998) diskutieren Techniken, die die Abhéngigkeit der
Optimierungsergebnisse der Dichtemethode von den Diskretisierungsgraden min-
dern sollen. Einerseits wird auf eine diskretisierungsunabhéngige Filtertechnik
(Sigmund [1997)) und anderseits auf eine Begrenzung der zuldssigen Dichtednderung
(Petersson und Sigmund |1998) zwischen Elementen verwiesen, um die Ausbildung
diinner Strukturen zu unterbinden. Diskretisierungsunabhangig meint, dass die
feinsten geometrischen Details durch den Filterradius und nicht durch das Finite-
Elemente-Netz vorgegeben werden. Zwar wird nicht explizit die Anwendbarkeit
als Wandstarkenrestriktion betont, jedoch eignen sich dafiir beide Ansétze.

Von Poulsen (2003) wird die MOLE-Methode (Monotonicity based minimum
Length scale) vorgestellt. Der Kern der Methode besteht darin, die Dichtevertei-
lung an jedem Punkt der Struktur iiber einen mit Geraden ausgefiillten Kreis
abzutasten. Diese Geraden schneiden jeweils den Mittelpunkt des Kreises. Andert
sich die Dichte entlang der Geraden nicht, ist die minimale Wandstarke — die dem
Durchmesser des Kreises entspricht — eingehalten worden. In der Verdffentlichung
werden jedoch auf Begrenzungen des Verfahrens wie z. B. die nicht Anwendbarkeit
auf glatte, konvexe Strukturrdnder hingewiesen.

Guest etal. (2004) fihren eine Trennung zwischen Entwurfs- und physikalischen
Variablen ein. Als physikalische Variablen werden die einzelnen Elementdichten
gewahlt. Als Entwurfsvariablen werden die Elementdichten lokal benachbarter
Elemente zusammengefasst. Dies geschieht an jedem Elementschwerpunkt mithilfe
einer Wichtungsfunktion, die innerhalb eines vordefinierten Radius wirkt. Aufgrund
dieser lokalen Gruppierung von Elementdichten entstehen keine geometrischen
Details, die kleiner als der Radius der Wichtungsfunktion sind.

Bei der Optimierung von tiefziehbaren Blechstrukturen iiberfithrt Dienemann
(2018) die Wandstarkenrestriktion in die Bestrafung der Sensitivitaten von Ele-
menten, die zu weit entfernt von der Mittelfldche eines Blechs liegen.

Im Kontext der Level-Set-Optimierung ist die Forschungshistorie in Bezug auf
Wandstéarkenrestriktionen weniger umfassend. Cheng et al. (2006) fithren eine
Methodik ein, mit deren Hilfe die Level-Set-Funktion hin zur Ausbildung vordefi-
nierter geometrischer Formen gesteuert werden kann. Uber eine Dimensionierung
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dieser Formen kann die Wandstéarke wahrend der Optimierung restringiert werden.
Der Nachteil dabei ist jedoch, dass die optimierten Strukturen nur aus geometri-
schen, primitiven Formen bestehen, was die Entstehung schwacher lokaler Minima
begiinstigt.

Ein alternativer Ansatz wird von Chen etal. (2008)) in Form eines zu minimieren-
den Straffunktionals beschrieben. Dieses Funktional wird so definiert, dass dessen
Minimierung die Ausbildung stabférmiger Strukturen mit einheitlichem Durchmes-
ser begiinstigt. Die Autoren betonen, dass die numerische Vorgabe einer minimalen
Wandstérke nicht garantiert zur geforderten Wandstérke fiihrt. Diese ist in den
durchgefiihrten Versuchen abhéngig von der Wahl eines Lagrange-Parameters. Von
daher konnen nach Erreichen des Minimums immer noch zu geringe Wandstarken
vorliegen.

Allaire etal. (2016) leiten zur Integration verschiedener Wandstéarkenrestriktionen
Sensitivitaten auf Basis der vorzeichenbehafteten Abstandsfunktion her. Zu den be-
trachteten Restriktionen zahlen neben der Einhaltung einer Mindestwandstéarke die
Gewahrleistung einer Maximalwandstérke und die Einhaltung eines Mindestabstan-
des zwischen nicht massebehafteten Strukturbereichen. Die Restriktionen werden
in Straffunktionale iiberfithrt und mithilfe der vorzeichenbehafteten Abstandsfunk-
tion mit der Level-Set-Funktion gekoppelt. SchliefSlich werden die Sensitivitaten
dieser Funktionale beziiglich Verschiebungen der Strukturgrenzen berechnet. In
der Veroffentlichung wird betont, dass bei der Einhaltung von Mindestwandstéarken
auch Bereiche beeinflusst werden konnen, an denen die Restriktion eigentlich erfiillt
ist. Dieser Effekt kann beispielsweise in diinnen Spalten auftreten. Hier kann die
Sensitivitdt an einem zu diinnen Strukturbereich einen auf der gegeniiberliegenden
Seite des Spalts liegenden, ausreichend dicken Bereich beeinflussen und diesen
damit ,ungewollt* verdicken.

Die vorgestellte Forschungshistorie zeigt, dass insbesondere in Anwendung der
Level-Set-Methode weiterer Forschungsbedarf zur Optimierung frasbarer Struk-
turen besteht. Besondere Aufmerksamkeit ist dabei auf die Beriicksichtigung
realistischer Werkzeuggeometrien zu legen, die in bisherigen Arbeiten nur stark
vereinfacht oder zum Teil gar nicht einbezogen werden. Weiter ist zu untersuchen,
wie eine fertigungsgerechte Optimierung ohne die strikte Unterdriickung des Struk-
turwachstums gelingen kann, um die von Morris et al. (2020)) beobachtete Tendenz
zur Ausbildung schwacher lokaler Minima zu verringern. Auflerdem wird bisher in
keiner Forschungsarbeit untersucht, wie die Kombination einer Zugéanglichkeits-
und Wandstarkenrestriktion gelingen kann. Dabei ist festzuhalten, in welchem Ma-
e dadurch das Konvergenzverhalten und die Optimierungsergebnisse beeinflusst
werden.



3 Topologieoptimierung mit der
Level-Set-Methode

Im Zuge der Forschungsarbeiten von Wang et al. (2003)) und Allaire et al. (2004))
wird die Level-Set-Methode erstmalig in der Topologieoptimierung mechanischer
Strukturen eingesetzt. Seither reiht sich dieser Ansatz als bedeutendes Verfahren
in die Methoden der Topologieoptimierung ein.

In diesem Kapitel wird zur Einfiihrung des Optimierungsverfahrens zunachst ein
beispielhaftes Optimierungsproblem vorgestellt und mathematisch definiert. Im
Anschluss daran werden die Sensitivitaten der Zielfunktion und der beriicksichtig-
ten Restriktion iiber das Konzept der Formableitung hergeleitet.

Schlielich wird die Funktionsweise der Level-Set-Methode grundlegend erlautert
und dargestellt, wie die errechneten Sensitivitaten in diese Methode integriert und
damit in eine Strukturoptimierung iiberfithrt werden.

3.1 Formulierung des Optimierungsproblems

Rozvany (1997)) erlautert, dass als vergleichsweise einfaches Optimierungsproblem
in der Topologieoptimierung mechanischer Strukturen die Minimierung der mittle-
ren Nachgiebigkeit unter der Vorgabe einer Volumenrestriktion gilt. Die mittlere
Nachgiebigkeit beziffert global {iber das gesamte Volumen einer belasteten Struk-
tur, wie viel mechanische Arbeit deren &uflere Lasten verrichten. Im Gegensatz zur
mittleren Nachgiebigkeit gestaltet sich die Minimierung einer lokalen Eigenschaft
wie z. B. der maximalen Vergleichsspannung als schwieriger. Wie Schumacher
(2020) erldutert, liegt dies darin begriindet, dass die Position, an der die maximale
Vergleichsspannung auftritt, im Verlauf der Optimierung sprunghaft wechseln
kann. Eindeutige Losungen solcher Optimierungsaufgaben kénnen dann nicht
immer gefunden werden. Im Forschungskontext wird daher, sofern moglich, haufig
die Minimierung der mittleren Nachgiebigkeit als Zielfunktion gewéhlt. Auch in
dieser Arbeit wird diese Zielfunktion in allen Optimierungsbeispielen verwendet.
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Abbildung 3-1: Eine durch Oberflichen- und Volumenkréfte belastete Struktur,
modifiziert nach Schumacher (2020))

In Abbildung ist eine Struktur 2 dargestellt, die durch Volumenkrafte f
und auf ihrem Rand I" durch Oberflachenkrifte g belastet wird. Reddy (2013)
und Gross etal. (2012) beschreiben, dass im Gleichgewichtszustand bei linear-
elastischem Materialverhalten die von den &ufleren Lasten verrichtete Arbeit mit
der in der Struktur gespeicherten Forménderungsenergie in Relation zueinander
gesetzt werden kann. Dieser Zusammenhang wird im Satz von Clapeyron festgehal-
ten. Setzt man voraus, dass die Belastungen unabhéngig von der Deformation der
Struktur sind, besagt der Satz, dass die von den dufleren Lasten verrichtete Arbeit
W, der doppelten im Korper gespeicherten Formanderungsenergie U; entspricht

W, = 2U; . (3-1)

Mithilfe des resultierenden Verschiebungsfelds w wird die von den dufleren Lasten
verrichtete Arbeit berechnet aus

Wa:/Qf-udQ+/Fg-udr. (3-2)

Wird mit o (u) der Spannungstensor und mit € (u) der Dehnungstensor bezeichnet,
ergibt sich die im Korper gespeicherte Forménderungsenergie zu

Ui:;/ga(u):e(u)dQ. (3-3)

Ersetzt man in Gleichung die verrichtete Arbeit und die gespeicherte For-
ménderungsenergie durch die gezeigten analytischen Ausdriicke, erhdlt man die
mittlere Nachgiebigkeit C' (€2). Diese entspricht formal der doppelten in der Struk-
tur gespeicherten Formanderungsenergie und ergibt sich zu

(J(Q):Wa:/Qf-udQ+/Fg-udr=/Qa(u);s(u)dQ. (3-4)
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Die Minimierung der mittleren Nachgiebigkeit entspricht demnach einer Verrin-
gerung der Formanderungsenergie bzw. einer Verringerung der von den dufleren
Lasten verrichteten Arbeit.

Als Restriktion wird gefordert, dass das Volumen V' (Q2) der Struktur einen Zielwert
V. annehmen soll. Besteht diese nur aus einem Material, wird dadurch gleichzeitig
deren Masse restringiert. In der numerischen Praxis wird haufig anstatt des Volu-
mens ein Volumenfillgrad Vi () verwendet. Dabei wird das Strukturvolumen auf
das Designraumvolumen Vp normiert. Formal ergeben sich als Restriktionsformu-
lierungen des Volumens und des Volumenfiillgrads

1
V(Q)—Vz=/QdQ—VZ=O bzw. VD(/QdQ—VZ):o. (3-5)

Das Optimierungsproblem wird schliellich unter Verwendung der Zielfunktion und
der Volumenrestriktion wie folgt definiert:

minC’(Q):/Qa(u):s(u)dQ
(3-6)
sodass V(Q)—VZ:/QdQ—VZ:O.

3.2 Sensitivitatsanalyse

Zur Losung des Optimierungsproblems muss zunéchst ermittelt werden, wie
sich die Funktionswerte der Zielfunktion und der Restriktion bei Formanderungen
der Struktur &ndern. Dazu werden die Formsensitivititen der mittleren Nachgiebig-
keit sowie des Volumens mithilfe von Formableitungen bestimmt. Auf Grundlage
dieser Informationen kann die Strukturentwicklung so gesteuert werden, dass das
zugrunde liegende Optimierungsproblem gelost wird.

3.2.1 Konzept der Formableitung

Nach Walker (2015) wird die Anderung von einem Gebiet 2 C R” in ein neues
Gebiet 2, € R"™ mathematisch durch eine Verschiebung aller Punkte & des Gebiets
entlang eines Verschiebungsfelds 0 (x) : © — R" definiert. Fiir den weiteren
Verlauf wird n € {2,3} angenommen. Eine solche Transformation ist in Abbildung
verdeutlicht. Wird mit ¢ € R das MaB} der Gebietsinderung skaliert, kann
diese Transformation formuliert werden als

QG ={x+1t0:VreQ}. (3-7)
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Abbildung 3-2: Transformation eines Gebietes €2 in ein Gebiet (2, iiber ein
Verschiebungsfeld ¢, modifiziert nach Allaire etal. (2021))

Sokolowski und Zolesio (1992) definieren die Formableitung eines gebietsabhan-
gigen Funktionals J (€2) bei solchen Transformationen als folgenden Grenzwert:

roye=Sr0) = LG =IO

= 3-8
dt o+ tT=0 t (3-8)

Die Schreibweise J' (€2) @ bedeutet, dass die Ableitung in Richtung des Verschie-
bungsfelds definiert ist. Im Folgenden werden die Formableitungen eines Gebiets-
und Randfunktionals nach Sokolowski und Zolesio (1992) sowie Walker (2015)
vorgestellt. Fine exemplarische Herleitung fiir die Formableitung des Gebietsfunk-
tionals ist im Anhang [A] zu finden.

Formableitung eines Gebietsfunktionals

Ein Funktional J () : Q — R, das auf einem Gebiet Q C R? ausgewertet wird
und von einer Funktion f : ) — R abhangt

J(Q) = [ f(@)de, (3-9)
besitzt in Richtung eines Verschiebungsfelds 0 : 2 — R? die Formableitung
!/ o / . -
J(Q)e_/gf(g)d9+/rf(9)e ndl . (3-10)

In Gleichung wird durch den ersten Term berticksichtigt, dass Gebietstransfor-
mationen zu einer Anderungen der Funktion f fithren kénnen und diese wiederum
zu einer Anderung des Funktionals J (Q2) beitragen. Darin wird die Anderung
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der Funktion als f’ (§2) beziffert. Walker] illustriert dies wie folgt: Beschreibt das
Funktional z. B. den Volumenstrom und die Funktion die Stromungsgeschwindig-
keit in einem Rohr, fiihrt eine Anderung des Innenradius (Gebietstransformation)
zu einer Anderung der Stromungsgeschwindigkeit und des Volumenstroms. Im
zweiten Term wird erfasst, welche Anderungen des Funktionals durch die reine
Gebietstransformation bei konstant gehaltener Funktion f entstehen. Die Ande-
rung des Gebiets wird charakterisiert durch die Randverschiebungen 0, die auf die
Normalenrichtung n des Randes abgebildet werden. Skaliert werden die Gebietsan-
derungen mit der Funktion f. Allaire et al. (2004) erldutern, dass Formableitungen
nur von Randverschiebungen in Normalenrichtung abhéngig sind. Tangentiale
Verschiebungen fiithren zu keiner Anderung des zugrunde liegenden Funktionals.

Formableitung eines Randfunktionals

Ein Funktional K () : Q — R, das auf einem Rand ' C R? ausgewertet wird und
von einer Funktion f : {2 — R abhéngt

K(Q) = /F F(Q)dr, (3-11)

besitzt in Richtung eines Verschiebungsfelds 0 :  — R? die Formableitung
/ o ! 76.} . . o . o
K(Q)H—Af(ﬂ)dF+/F< +m‘>9 ndll mit =V -n. (3-12)

Wie zuvor beschreibt f’(2) die Anderung der Funktion f bei Transformationen
des Gebiets. Der dazugehorige Term beschreibt daher den Anteil der Funktions-
dnderung an der Anderung des Funktionals K (Q2). Im zweiten Term wird auch
hier berticksichtigt, welchen Anteil die Gebietsinderung bei konstant gehaltener
Funktion f an der Anderung des Funktionals besitzt. Hier ist die Gebietsinderung
ebenfalls durch eine Verschiebung des Strukturrandes in Normalenrichtung charak-
terisiert und wird mit zwei Einflussgrofien skaliert. Mit der Ableitung der Funktion
in Normalenrichtung g—fl wird beriicksichtigt, dass sich bei Randverschiebungen
die auf dem Strukturrand vorliegenden Funktionswerte dndern konnen. Die zweite
Einflussgrofle  ist die mittlere Kriimmung des Strukturrandes. Diese hat bei
Verschiebungen des Randes einen Einfluss auf die betragsmifiige Anderung der
Oberfliache. Zur Veranschaulichung dieses Effekts sind in Abbildung zwei
Beispielstrukturen gezeigt.

Die Kugel in Abbildung ist an allen Punkten ihrer Oberflache konvex ge-
kriimmt. Bei einer gleichméfligen Verschiebung der Oberflache in ihre &duflere
Normalenrichtung vergroflert sich die Kugeloberflache. Im Gegensatz dazu weist
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e

(a) Konvexe Oberfliche (b) Konvexe und konkave
Oberflachenbereiche

Abbildung 3-3: Einfluss von konvex- und konkav gekriimmten Oberfléchen auf die
Entwicklung des Strukturrandes

die Struktur in Abbildung B=3p im Bereich der ausgeschnittenen Halbkugel einen
konkav gekriimmten Oberfléchenbereich auf. Bei einer Verschiebung dieses Bereichs
in seine aulere Normalenrichtung verringert sich die Oberflache der Gesamtstruk-
tur.

Die Formsensitivitaten g—é werden im weiteren Verlauf dieser Arbeit haufig all-

gemein als Skalarfeld w ausgedriickt. Allaire et al. (2021]) betonen, dass Forma-
bleitungen mithilfe der Formsensitivitaten wie folgt geschrieben werden kénnen:

oJ

/ — _ . — . —
J(@)0= [ =50 ndr /Fwe ndl . (3-13)
In dieser Schreibweise kann eine Formableitung als Anderung eines Gebiets- oder
Randfunktionals bei Verschiebungen des Randes in seine Normalenrichtung, skaliert

durch die Formsensitivitiat verstanden werden.

3.2.2 Formableitung der mittleren Nachgiebigkeit

Zur Bildung der Formableitung der mittleren Nachgiebigkeit (Gleichung [3—4)) muss
berticksichtigt werden, dass sich bei Gebietstransformationen neben dem Gebiet
) auch das Verschiebungsfeld w édndert. Unter dieser Pramisse leiten Sokolowski
und Zolesio die Formableitung her als

(J’(Q)e:/F

on
+/FL0'(u):s(u)0-ndF.

(2[M+/§g-u+f-u] —a(u):s(u))@-ndF (314
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Darin wird mit I'; der gelagerte Rand und mit I'p der iibrige Rand bezeichnet,
sodass flir den gesamten Rand I' = I';, + ' gilt. Letzterer setzt sich aus belasteten
['p und unbelasteten Bereichen I'y zusammen, wobei I'r = I'g 4+ I'y gilt. In
numerischen Beispielen — so auch in den Beispielen dieser Arbeit — wird haufig auf
Volumenkrafte verzichtet. Wird auflerdem angenommen, dass sich der belastete
und der gelagerte Rand wéahrend der Optimierung nicht verschieben, verschwindet
das dortige Verschiebungsfeld. Die Formableitung wird dann nur noch auf dem
unbelasteten Rand ausgewertet. Auf diesem ist der Ausdruck in der eckigen
Klammer — aufgrund nicht vorhandener Belastung — null. Die Ableitung vereinfacht
sich dann zu

C’(Q)G:—/Foa(u):s(u)@-ndf. (3-15)

3.2.3 Formableitung des Volumens

Die Formableitung des Volumens
V(Q) = /Q o (3-16)

kann direkt aus Gleichung bestimmt werden. Dazu wird die Funktion f ()
zu f = 1 gesetzt. Deren Formableitung f’(€2) ist null. Die Formableitung des
Volumens lautet daher

V' (Q)0 = /F 0 - ndl. (3-17)

3.3 Einfithrung in die Level-Set-Methode

Die Level-Set-Methode ist ein in den 1980er-Jahren von Osher und Sethian (1988)
entwickeltes Verfahren, mit dessen Hilfe sich bewegende Kurven und Oberflichen
numerisch verfolgen und analysieren lassen. Als urspriingliches Anwendungsgebiet
gilt die Bildverarbeitung insbesondere in medizinischen Aufgaben. So diskutieren
beispielsweise Osher und Tsai (2003) den Einsatz der Level-Set-Methode zur
automatisierten Segmentierung der Bilddaten von Rontgengeraten und Computer-
Tomografen. Osher und Fedkiw (2003) beschreiben als weiteres und populéres
Anwendungsgebiet die numerische Verfolgung von diinnen Flammfronten bei der
Analyse von Verbrennungsvorgiangen. Weitere Einsatzmoglichkeiten neben der
Strukturoptimierung stellen Gibou et al. (2018)) vor. Dazu zahlt beispielsweise die
Simulation der Kristallisierung von Mehrkomponenten-Legierungen. Auflerdem
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Vs

Nullniveau
(a) Level-Set-Funktion (b) Struktur

Abbildung 3—4: Eine Level-Set-Funktion zur impliziten Beschreibung einer
Beispielstruktur

werden Anwendungen in der medizinischen Forschung genannt. So kann z. B.
mithilfe eines auf der Level-Set-Methode basierenden Ansatzes eine Elektroporation
simuliert werden. Ein solches Verfahren wird genutzt, um die Durchléssigkeit von
Zellmembranen mittels elektrischer Pulse fiir medizinisch notwendige Molekiile zu
erhohen.

3.3.1 Strukturbeschreibung durch eine Level-Set-Funktion

Die Grundlage des Verfahrens bildet die Beschreibung des zu verfolgenden Objekts
durch eine Level-Set-Funktion. Im Rahmen der Topologieoptimierung wird die
zu optimierende Struktur durch eine solche Funktion parametrisiert. Dazu wird
der n-dimensionale Rand I' einer Struktur 2 implizit als Menge aller Nullstellen
einer (n + 1)-dimensionalen Level-Set-Funktion definiert. Eine charakteristische
Eigenschaft der Level-Set-Funktion ist, dass diese an innerhalb der Struktur
liegenden Punkten negative und an auflerhalb der Struktur liegenden Punkten
positive Werte annimmt. Formal gilt dann fiir die Level-Set-Funktion ¢ (x) an
einem Punkt £ € R™:

>0 fallsx ¢ Q),
p(@){=0 fallsxel, (3-18)
<0 fallsx e .

Um die in Gleichung definierten Eigenschaften auf die Level-Set-Funktion
zu iibertragen, wird diese in den meisten Anwendungen als vorzeichenbehaftete
Abstandsfunktion definiert (ein alternativer Ansatz wird von Wang und Wang
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Abbildung 3-5: Wachstum eines Kreises (rot) durch die Entwicklung einer
Level-Set-Funktion, modifiziert nach Sethian (1999)

(2006)) iiber die Interpolation der Level-Set-Funktion aus radialen Basisfunktio-
nen eingefiihrt). Die Level-Set-Funktion représentiert dann an jedem Punkt des
Designraums den kiirzesten vorzeichenbehafteten Abstand zur Strukturgrenze.
Neben der Erfiillung aller geforderten mathematischen Eigenschaften hat die Ab-
standsfunktion numerische Vorteile bei der Entwicklung der Level-Set-Funktion.
Eine beispielhafte Level-Set-Funktion ist in Abbildung dargestellt. Deren rot
markierte Nullstellenmenge beschreibt den Rand der in Abbildung gezeigten
Struktur.

3.3.2 Entwicklung der Strukturrander

Der zweite zentrale Bestandteil der Level-Set-Methode ist die numerische Ver-
folgung zeitlich verédnderlicher Kurven oder Oberflachen. In der Topologieopti-
mierung werden damit Forménderungen mechanischer Strukturen erfasst. Solche
Verdnderungen der Strukturgrenzen werden formal durch eine Entwicklung der
Level-Set-Funktion realisiert. Im Folgenden wird die von Sethian (1999) entwickelte
Level-Set- Entwicklungsgleichung hergeleitet.

Legt ein auf dem Strukturrand befindlicher Punkt xp bei einer Entwicklung
des Randes einen Weg « (t) iiber die Entwicklungszeit ¢ zuriick, muss fiir die
zeitabhéngige Level-Set-Funktion auf diesem Randpunkt

p(x(t),t) =0 (3-19)

gelten. In Abbildung ist dazu die exemplarische Entwicklung einer Level-
Set-Funktion zu drei verschiedenen Zeitpunkten dargestellt. In der gezeigten
Entwicklung wird die Level-Set-Funktion kontinuierlich abgesenkt. Dies fiithrt zu
einem gleichméfBigen Wachstum des roten Kreises.
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Mithilfe des totalen Differentials und der Kettenregel lasst sich am verfolgten
Randpunkt (Gleichung [3-19)) die zeitliche Anderung der Level-Set-Funktion be-
stimmen. (Partielle Ableitungen werden im weiteren Verlauf durch ein Komma
und die jeweilige Variable abgekiirzt.) Fiir die zeitliche Anderung gilt dann

dp dp | Oy Oxp

_ 9TR _ P -2
dt ot " dxyn ot Put V-2 =0 (3-20)

Der verfolgte Randpunkt bewegt sich mit der Geschwindigkeit @ ;. Dieser kann
sich nur normal zum Rand bewegen. Zur Begriindung zerlegen Osher und Fedkiw
(2003) die Geschwindigkeit in eine Normal- v, und eine Tangentialkomponente

vT. Aus Gleichung folgt dann:
01+ Vo - (v,n+o.7)=9;+v,Vo-n=0 mit Vep.-7=0. (3-21)

Die Geschwindigkeit in Normalenrichtung v,, wird als Entwicklungsgeschwindigkeit
bezeichnet. Fiir die Normaleneinheitsvektoren kann geschrieben werden:

Vo

n=-—. 3-22
Vol (3-22)
Damit kann der Ausdruck B=21] durch
\Y4
Vo n=Veo o =|Vy (3-23)

IVl

weiter vereinfacht werden. Die Level-Set-Entwicklungsgleichung lasst sich dann als
folgendes Anfangswertproblem schreiben:

9]
5:+Un’VQO| =0 mit ¢(x,t=0)=¢p. (3-24)

Darin bezeichnet py die Struktur vor Beginn der Entwicklung.

3.3.3 Losung der Level-Set-Entwicklungsgleichung

Die Level-Set-Entwicklungsgleichung wird von Sethian (1999) sowie Osher und
Fedkiw (2003) in die Kategorie der Hamilton-Jacobi-Gleichungen eingeordnet.
Unter Verwendung der Hamilton-Funktion H zeichnen sich diese durch die folgende
Struktur aus:

1
pitH(Ve)=0 mit H(Vy)=0v,|Ve| =0, (% + ¢ +¢%)° . (3-25)

Numerische Losungsverfahren solcher Gleichungen werden von Osher und Shu
(1991)) sowie Sethian (1999) entwickelt und diskutiert. In beiden Publikationen
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wird zur Gewinnung einer geeigneten Approximation der Hamilton-Funktion die
Entwicklungsgleichung in eine Kontinuitédtsgleichung iiberfiihrt. Am Beispiel einer
eindimensionalen Version von Gleichung wird diese Transformation durch
eine Differentiation iiber = erzielt

(04) o+ (H(p2)) , = (pa) , + (H (02)) , = ar+ (H(a) ,=0.  (3-26)

Sethian| erliutert am Beispiel einer Stromung, dass die zeitliche Anderung der
Erhaltungsgroe a als die Anderung der in ein Kontrollvolumen ein- und aus-
stromenden ,Fluidanteile’ H (a) approximiert wird. Ein solcher Anteil wird als
Fluss e bezeichnet und beschreibt im Sinne des Beispiels, welche Fluidmasse pro
Zeiteinheit durch eine Grenzschicht in Stromungsrichtung flieft. In Abbildung
ist eine exemplarische Flussanderung iiber ein Kontrollvolumen gezeigt.

Kontrollvolumen €A diskretisiert
Eintritt +—> —> Austritt - \ Hi 1)
T e |
exakt-7 '
i1 a; ait1 g ! —
—> @ ' *>
Az i-1 i—1/2 i

(b) Naherung des Flusses

(a) Flussinderung iiber Az swischon zwei Knoten

Abbildung 3-6: Abhingigkeit der zeitlichen Anderung der Erhaltungsgrofie von der
Flussdnderung tiber ein Kontrollvolumen, modifiziert nach Sethian (1999))

Die Flisse zwischen den Knoten bzw. auf den Grenzen des Kontrollvolumens
werden mit e (a;, a;11) bzw. e (a;_1, a;) bezeichnet. Sethian tiberfithrt dies in eine
diskretisierte Form der Kontinuitatsgleichung iber k£ Zeitschritte mit einer
Zeitschrittweite At fiir ein Kontrollvolumen der Lange Ax am Knoten ¢ als

k41 k k k _ k k
aﬁ —a; € (aiaaH—l) € (ai—laaz’ - _Hi+1/2 — H; 1

At Ax Ax

Bei einem Vergleich mit Gleichung wird klar, dass die Flussdnderung als
Anderung der Hamilton-Funktion ausgedriickt werden kann.

Wie in Abbildung gezeigt, wird der Fluss zwischen zwei Knoten — auf einer
Grenze des Kontrollvolumens — bei einer Reduktion des Knotenabstands immer

(3-27)

exakter aus den Knotenwerten genahert. Demnach kann die Hamilton-Funktion an
einem Knoten als Fluss innerhalb des Kontrollvolumens H (af) e (ai_l /25 Qi1 /2)
approximiert werden. Mithilfe dieser Information wird die Entwicklungsgleichung
diskretisiert. Das Schema zur Berechnung eines neuen Level-Set-Wertes ist
an einem eindimensionalen Beispiel in Abbildung verdeutlicht.
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v &

i1 i i+ 1

Abbildung 3-7: Losung der Entwicklungsgleichung durch eine Approximation der
Hamilton-Funktion, modifiziert nach Sethian (1999)

Die Anderung der Level-Set-Funktion in einem Zeitschritt entspricht einer negati-
ven Anderung der am betrachteten Knoten approximierten Hamilton-Funktion.
Letztere ist abhéngig von den Fliissen auf den Grenzen des umschlieSenden
Kontrollvolumens. Bei Annahme einer Entwicklungsgeschwindigkeit von v, = 1
entspricht der Fluss gerade der Anderung der Level-Set-Funktion iiber die z-
Richtung (siche Gleichung [3-25| rechts). Osher und Sethian (1988)) iiberfiihren

dies in ein Upwind-Schema

pitt = of k - 2 : +z 2\ 3
VI —H (gom) =— <max (DZ- o, O) + min (Di gp,()) ) . (3-28)
Ist die Anderung der Level-Set-Funktion in Richtung der Entwicklungsgeschwin-
digkeit positiv, wird der linksseitige Differenzenquotient D; “¢ verwendet. Ist die
Anderung negativ, wird der rechtsseitige Differenzenquotient D; "¢ eingesetzt
(siehe Anhang . Haben die Differenzenquotienten verschiedene Vorzeichen,
werden entweder beide miteinander addiert oder der Fluss zu null gesetzt. In der
Stromungsmechanik kann dies als ein Aufeinandertreffen oder AuseinanderflieSen
zweier Fluide interpretiert werden. Im letzteren Fall ist der Fluss zwischen bei-
den Stromungsanteilen gerade null. Eine Erweiterung der Losung auf beliebige
Entwicklungsgeschwindigkeiten ist im Anhang angegeben. Dazu wird das
Upwind-Schema um negative Geschwindigkeiten ergénzt. Sethian (1999)) stellt in
seiner Forschungsarbeit zuséitzlich Algorithmen zur Entwicklung mehrdimensiona-
ler Beispiele auf strukturierten sowie unstrukturierten Rechengittern vor. Diese
basieren alle auf dem hier beschriebenen Diskretisierungsansatz.

Die Losung der explizit diskretisierten Entwicklungsgleichung muss zur Gewahrleis-
tung der Stabilitdt unter der Einhaltung einer CFL-Bedingung (Courant-Friedrichs-
Lewy) erfolgen (Mecking 2000). Stabilitédt bedeutet nach Oertel etal. (2011), dass
die Diskretisierungsfehler der Losungen iiber den zeitlichen Verlauf nicht anwachsen.
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Die CFL-Bedingung stellt dazu die Anforderung, dass die Level-Set-Funktion pro
Zeitschritt At maximal tiber eine Gitterweite Ax entwickelt werden darf. Dadurch
wird unterbunden, dass die in Gleichung mithilfe der Differenzenquotienten
erfasste Ausbreitungsgeschwindigkeit von Informationen im Rechennetz nicht die
,physikalische’ Entwicklungsgeschwindigkeit iibersteigt. Nach Challis (2010) wird
dazu die grofite vorhandene Entwicklungsgeschwindigkeit ermittelt und folgende
Bedingung fiir einen Zeitschritt aufgestellt:
Ax

At
At < ———— mit CFL=max (Jv,|)— 0< CFL<1. (3-29)
max (|v,|) Az

3.3.4 Reinitialisierung

Zuvor wurde bereits erwahnt, dass die Level-Set-Funktion haufig als vorzeichenbe-
haftete Abstandsfunktion definiert wird. Der Grund dafiir ist, dass deren mathe-
matische Eigenschaften numerische Vorteile bei der Level-Set-Entwicklung bieten.
Neben den Eigenschaften aus Gleichung gilt fiir den Betrag des Gradienten
der vorzeichenbehafteten Abstandsfunktion

V| =1. (3-30)

Gemaf der Entwicklungsgleichung entspricht in diesem Falle die zeitliche
Anderung der Level-Set-Funktion genau der negativen Entwicklungsgeschwin-
digkeit. Im Verlauf der Strukturentwicklung verdndert sich jedoch der Gradient
der Level-Set-Funktion und die obige Eigenschaft geht fortlaufend verloren. Das
Maf der Verdanderung ist abhédngig vom zugrunde liegenden Geschwindigkeitsfeld.
Sethian (1999) erldutert, dass die Eigenschaft nur erhalten bleibt, wenn die
Entwicklungsgeschwindigkeiten die Bedingung

Ve -Vu,=0 (3-31)

erfiillen. Dies bedeutet, dass die Entwicklungsgeschwindigkeiten normal zu den
Isolinien der Level-Set-Funktion konstant sind. Diese Eigenschaft wird jedoch von
den meisten Geschwindigkeitsfeldern, insbesondere wenn diese auf strukturme-
chanischen Gesetzen basieren, nicht erfillt. Dijk etal. (2013)) erlautern, welche
numerischen Probleme eine Abweichung von der vorzeichenbehafteten Abstands-
funktion verursacht. Diese sind in Abbildung illustriert:

o Ist die Level-Set-Funktion zu steil, fithren grofie Anderungen der Funktion

zu kleinen Verschiebungen des Randes (Abbildung [3-8al).
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Az -

<
<

(a) Level-Set-Funktion zu steil  (b) Level-Set-Funktion zu flach
Vel >1 Vel <1

Abbildung 3-8: Einfluss des Gradienten der Level-Set-Funktion auf deren Entwicklung,
modifiziert nach Dijk et al. (2013)

o Ist die Level-Set-Funktion zu flach, fithren kleine Anderungen der Funktion

zu groflen Verschiebungen des Randes (Abbildung [3—8b)).

Zur Losung des Problems wird die Level-Set-Funktion zu regelméfligen Zeitpunkten
zur vorzeichenbehafteten Abstandsfunktion reinitialisiert. Sussman et al. (1994)
iiberfithren diesen Schritt in die Losung einer Reinitialisierungsgleichung

Op .

5 Tsen (@) (Ve[ =1) =0 mit ¢ (2,t=0)= . (3-32)
Die Gleichung wird bis zum Erreichen eines stationaren Zustandes gelost. Nimmt
der Betrag des Gradienten den Wert eins an, ist dieser Zustand gerade erreicht.
Mithilfe der Vorzeichenfunktion sgn(yg) wird zwischen innerhalb und auflerhalb
einer Struktur liegenden Bereichen differenziert. Zur Losung wird der in Kapitel

vorgestellte Ansatz genutzt.

3.3.5 Velocity Extension

Fir die Entwicklung der Level-Set-Funktion muss das zugrunde liegende Ge-
schwindigkeitsfeld auch auf Punkten auflerhalb des Nullniveaus definiert sein. Es
reicht aus, wenn die Geschwindigkeiten in einem schmalen Band um das Null-
niveau herum definiert werden. Dabei tritt jedoch die Fragestellung auf, welche
Geschwindigkeit diesen Punkten zugewiesen werden soll. In Abbildung ist
diese Problematik skizziert.

Beruhen die Entwicklungsgeschwindigkeiten auf strukturmechanischen Sensitivi-
taten, sind diese haufig von ,Natur® aus in der gesamten Struktur definiert. In
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Abbildung 3-9: Velocity Extension, modifiziert nach Sethian (1999)

diesem Fall spricht man von Natural Velocity Extension.

Oftmals ist die natiirliche Definition des Geschwindigkeitsfelds nicht gegeben. In
einem solchen Fall schlagen Osher und Fedkiw (2003)) eine Extrapolation der Rand-
geschwindigkeiten auf normal zum Rand orientierten Linien vor. Diese Form der
Definition von Entwicklungsgeschwindigkeiten wird daher auch Normal Velocity
Extension genannt. Ein dabei eintretender Nebeneffekt ist, dass dadurch gerade
die durch Gleichung formulierte Bedingung erfillt wird. Das resultierende
Geschwindigkeitsfeld fithrt also bei der Losung der Entwicklungsgleichung zu
einem Erhalt der vorzeichenbehafteten Abstandsfunktion. Die Bestimmung der
unbekannten Geschwindigkeiten wird wie bei der Reinitialisierung der Level-Set-
Funktion tiber die Losung einer partiellen Differentialgleichung bis zum Erreichen
eines stationdren Zustands durchgefithrt. Ersetzt man in Gleichung den
Klammerausdruck durch die Bedingung und betrachtet die Entwicklungsge-
schwindigkeit v,, als die zeitlich veranderliche Grofle folgt daraus die Gleichung

Ovn
ot

Darin ist v, das Geschwindigkeitsfeld sowie g die Level-Set-Funktion zum Zeit-
punkt null. Durch die Vorzeichenfunktion wird gewéhrleistet, dass sich die Rand-

+sgn(po) V- Vu, =0 mit v, (x,t=0)=1v,0. (3-33)

informationen immer vom Strukturrand weghbewegen. Auf innen liegenden Knoten
werden die Geschwindigkeitsinformationen in die Struktur hinein transportiert
und auf auflen liegenden Knoten von der Struktur wegtransportiert. Die Gleichung
kann nach Osher und Fedkiw (2003) mithilfe des in Kapitel vorgestellten

Ansatzes diskretisiert werden.
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3.4 Optimierungsalgorithmus

Im bisherigen Verlauf des Kapitels wurde die Minimierung der mittleren Nach-
giebigkeit unter einer Volumenrestriktion als beispielhaftes Optimierungsproblem
eingefiihrt. Darauf basierend werden Sensitivitdten in der Gestalt von Formablei-
tungen hergeleitet. Mithilfe der Sensitivitaten kann eine Aussage dariiber getroffen
werden, wie sich die mittlere Nachgiebigkeit und das Strukturvolumen bei einer
Verschiebung des Randes in dessen Normalenrichtung éndert. Im Folgenden wird
die Fragestellung behandelt, in welche Richtung sich der Strukturrand zur Losung
des Optimierungsproblems bewegen muss. Dazu wird vorausgesetzt, dass die zu
optimierende Struktur als Nullniveau einer Level-Set-Funktion beschrieben ist.

3.4.1 Die erweiterte Lagrange-Methode

Eine Moglichkeit zur Losung einer Optimierungsaufgabe bietet sich durch Zuhil-
fenahme der Lagrange-Funktion an. Mithilfe dieser Funktion kann die Losung
eines restringierten Optimierungsproblems in die Losung eines nicht-restringierten
Ersatzproblems iiberfithrt werden. Wie Harzheim (2008) betont, vereinfacht dies
die mathematische Handhabung der Optimierungsaufgabe. Zur Veranschaulichung
des Prinzips dient folgende Optimierungsaufgabe, bestehend aus einer zu minimie-
renden Zielfunktion J (2) und n Gleichheitsrestriktionen R; (Q):

min J (Q)

‘ (3-34)
sodass R; () =0 mit i=1,..,n.

Die Zielfunktion und die Restriktionen werden nun in eine Lagrange-Funktion £*
iiberfithrt. Unter Zuhilfenahme von Lagrange-Multiplikatoren \; lasst sich diese
schreiben als

LN =T Q)+ > MR () mit A €R. (3-35)

i=1

Die Losung der Optimierungsaufgabe befindet sich an einem Punkt der Lagrange-
Funktion, der beziiglich Formédnderungen und Anderungen der Lagrange-Multi-
plikatoren stationar wird. Strategien zum Auffinden dieses Punktes werden von
Harzheim (2008)) und Schumacher (2020)) vorgestellt.
Bei der erweiterten Lagrange-Methode wird Gleichung[3-35]um einen quadratischen
Strafterm erganzt (Harzheim 2008). Dieser Term ,bestraft’ wiahrend der Minimie-
rung der Lagrange-Funktion auftretende Verletzungen der Restriktionen. Das Maf}
der Bestrafung wird durch Bestrafungsparameter A; skaliert. Allaire et al. (2016)
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erlautern, dass mit der erweiterten Lagrange-Methode sehr einfach verschiedenste
Restriktionen in die Optimierung integriert werden kénnen. Diese Eigenschaft wird
zur Integration der Fertigungsrestriktionen in Kapitel |4 ausgenutzt. Die erweiterte
Lagrange-Funktion £ wird folgendermafien formuliert:

LN = T(Q) + AR Q) + 3 5 B2 (Q) mit A e RY . (330)
i=1 i=1 <1\

Die Lagrange-Multiplikatoren miissen iterativ wihrend der Optimierung bestimmt
werden. Je naher sich diese ihren optimalen Werten nahern, desto geringer wird
der Einfluss der Strafparameter auf die Lage des Optimums. Sind die optimalen
Lagrange-Multiplikatoren ermittelt, haben Anderungen der Strafparameter keinen
Einfluss mehr auf die Lage des Optimums. Der Bestrafungsterm fithrt demnach
lediglich zu einer Erhéhung der Konvergenzgeschwindigkeit. Dies ist ein Vorteil
gegeniiber anderen, auf Straftermen basierenden Verfahren wie z. B. die Verwen-
dung von internen- oder externen Straffunktionen (Schumacher 2020).

Zum Auffinden des Optimums €2,,; wird Gleichung iiber mehrere Iterationen
minimiert. Fiir deren Formableitung gilt formal in der k-ten Iteration in Richtung
des Verschiebungsfeldes 6

n 1
L(QF X AF) o =0 (%) 6 + ; (Af + 1l (Q’“)) R (%) 6.  (3-37)
Der darin enthaltene Klammerausdruck wird zur Verbesserung der Lagrange-
Multiplikatoren verwendet. Zu Beginn der Optimierung konnen diese als \) = 0
gewahlt werden. Fiir die verbesserten Werte zur Iteration k + 1 gilt

S

AL — \B
A

R, (2F) . (3-38)
Sobald die Restriktionen R; (2) = 0 erfiillt werden, sind die optimalen Lagrange-
Multiplikatoren gefunden. Zur Erhohung der Konvergenzgeschwindigkeit kann das
Maf der Bestrafung im Verlaufe der Optimierung erhoht werden. Dies entspricht
in der gewdhlten Formulierung einer Verkleinerung der Strafparameter mit dem
sogenannten Verstarkungsfaktor a

AMY = aAF mit 0<a< 1. (3-39)

Das Maf} der Bestrafung darf zu Beginn der Optimierung nicht zu grof3 gewéhlt
werden, da sonst Restriktionsverletzungen zu stark bestraft werden und dies wie-
derum zur Ausbildung schwacher lokaler Minima fithren kann.
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3.4.2 Wahl der Entwicklungsgeschwindigkeit

Zum FErreichen des Optimierungsziels muss die Entwicklungsgeschwindigkeit der
strukturbeschreibenden Level-Set-Funktion auf die Losung der Optimierungsaufga-
be ausgerichtet werden. Eine geeignete Entwicklungsgeschwindigkeit kann mithilfe
der erweiterten Lagrange-Funktion £ (Q2) gewonnen werden. Nach Allaire et al.
(2004) wird dazu die Definition der Formableitung aus Gleichung in eine Be-
dingung fiir die Randverschiebung tiberfiihrt. Die tiber den Parameter ¢ skalierte
Verschiebung 6 muss so gewéhlt werden, dass folgende Beziehung erfiillt wird:

L) =L(Q)+tL(Q)0+0(t) <L(Q) mit %Lr% Oit) =0. (3-40)
Darin beziffert o(t) den Fehler in der linearen Approximation. Wenn es gelingt, die
Formableitung der Lagrange-Funktion in Abhéngigkeit einer normal zum Rand
orientierten Verschiebung auszudriicken

ﬁmnezAwanﬂy (3-41)

(siehe auch Gleichung kann das gesuchte Geschwindigkeitsfeld durch die
Methode des steilsten Abstiegs bestimmt werden. In diesem Fall wird das Verschie-
bungsfeld als @ = —wn definiert. Dies gewahrleistet, dass die oben formulierte
Bedingung erfillt wird

cmg:cmyﬁéﬁwr+mw<cmy (3-42)

Die Entwicklungsgeschwindigkeit der Level-Set-Funktion setzt normal zum Rand
orientierte Geschwindigkeitskomponenten voraus. Von daher werden fiir diese die
Normalkomponenten des zuvor gewédhlten Verschiebunsgfelds verwendet

vtp,=0-n=-wn-n=-w. (3-43)

3.4.3 Konvergenzkriterium

Um wéhrend der Optimierung zu entscheiden, wann die Optimierung ihr Ziel
erreicht hat und beendet werden soll, wird ein Konvergenzkriterium definiert. In
dieser Arbeit geschieht dies, wenn die Anderung der Zielfunktion J () in zwei
aufeinanderfolgenden Iterationen k£ unter einem vordefinierten Schwellwert €y,
bleibt und gleichzeitig alle Restriktionen erfiillt sind

J(@) — T (@
J(@)"

Es sind alternative Definitionen fiir Konvergenzkriterien moglich. Weitere werden

z. B. von Dienemann (2018) oder Harzheim (2008) aufgelistet.

< Ekonw - (3—44)
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3.5 Optimierungsablauf

In der von Allaire et al. (2004)) eingefiihrten Topologieoptimierung mit der Level-
Set-Methode wird in der numerischen Umsetzung der in Abbildung gezeig-
te Ablauf verfolgt. Die Darstellung des Optimierungsablaufs orientiert sich an
Dienemann (2018)). Im weiteren Verlauf wird diese Variante auch als klassische
Level-Set-Optimierung bezeichnet.

Einlesen FE-Modell,

Optimierungsaufgabe

und -einstellungen

Sensitivitdtsanalyse

Entwicklung der

Level-Set-Funktion von Zielfunktion

Struktursimulation }17

und Restriktionen

Berechnung der
Struktureigenschaften

Initialisierung der :
Level-Set-Funktion LLevel—Set—Funktion J‘

Konvergenz

erzielt?

,,,,,,,,,,,,,,,,,

[in

Ausgabe als
Black& White-Design

Abbildung 3-10: Klassischer Ablauf der Topologieoptimierung mit der
Level-Set-Methode
---: nur in erster Iteration, ——: nur in jeder kr-ten-Iteration kr € N

Die Optimierung beginnt mit dem Einlesen der Optimierungsaufgabe, dazuge-
horigen Einstellungen sowie eines Finite-Elemente-Modells (FE-Modell). Zu den
Einstellungen gehoren z. B. die Wahl eines Konvergenzkriteriums oder die De-
finition der Strafparameter zu Optimierungsbeginn. Als Diskretisierung wéahlen
Allaire et al. (2004) ein strukturiertes Netz. Ahnlich wie bei der Dichtemethode
erhalten in der Struktur liegende Elemente eine normierte Dichte von eins und
auflerhalb der Struktur liegende Elemente eine Dichte von null (zur Vermeidung
singuldrer Steifigkeitsmatrizen wird statt null ein Wert von & = 1073 genutzt).
Anschliefend wird eine Struktursimulation durchgefiithrt, um das mechanische
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Verschiebungsfeld und daraufhin die Struktureigenschaften zu bestimmen. Dazu
zahlen im Falle des gewédhlten Optimierungsproblems die mittlere Nachgiebigkeit
und das Volumen der Struktur. Ist das Konvergenzkriterium nicht erfillt, wird
in der ersten Iteration eine Level-Set-Funktion initialisiert. Diese wird spéter
nach jeder kr-ten Iteration reinitialisiert. Daraufhin werden die Sensitivitaten der
Zielfunktion sowie der Restriktionen berechnet. Das resultierende Geschwindig-
keitsfeld wird zur Entwicklung der Level-Set-Funktion benutzt. Die Entwicklung
nach Kapitel wird iiber nrg Iterationen bzw. Entwicklungsschritte durch-
gefithrt. Die Anzahl der Entwicklungsschritte ist problemabhéngig. Ist diese zu
klein, konvergiert die Optimierung langsam in einem schwachen lokalen Minimum.
Werden zu viele Entwicklungsschritte gewahlt, &ndert sich das Design sehr schnell.
Dabei konnen geometrische Details verloren gehen. Die Optimierung konvergiert in
einem schwachen lokalen Minimum oder kann vollstandig abbrechen (Challis 2010)).
Nach der Strukturentwicklung wird mit der veranderten Struktur eine erneute
Struktursimulation durchgefiihrt. Sobald das Konvergenzkriterium erfillt ist, liegt
die optimierte Struktur als Black&White Design vor. Strukturbehaftete Bereiche
sind darin schwarz dargestellt.

Im Rahmen dieser Arbeit wird ein von der klassischen Level-Set-Optimierung
abweichender Ablauf eingesetzt. Dies liegt darin begriindet, dass in der numerischen
Umsetzung eine unstrukturierte Diskretisierung in Form von Tetraedernetzen
gewahlt wird. Ein Vorteil davon ist, dass durch adaptive Vernetzungstechniken auch
Details komplexer Strukturen vergleichsweise genau vernetzt werden konnen. Als
Nachteil ist der dadurch erhohte Rechenaufwand festzuhalten. Wie in Abbildung
3—11| gezeigt, verandert sich dabei der Optimierungsablauf.

Angelehnt an die Forschungsarbeit von Allaire et al. (2013) wird nach jeder Iteration
eine Neuvernetzung entlang des verschobenen Strukturrandes durchgefiihrt. Dabei
werden die neuen Randknoten exakt auf das aktuelle Nullniveau der Level-Set-
Funktion positioniert. Dazu wird auf jeder Tetraederkante, die das Nullniveau
schneidet, eine neue Randknotenposition bestimmt. Der anliegende Netzbereich
wird anschlieBend entlang dieser Randknoten neu vernetzt. Daraus resultiert ein
Netz, das in zwei Bereiche unterteilt werden kann. Ein Bereich reprasentiert das
Strukturnetz und der andere das Designraumnetz. Wéhrend die Entwicklung der
Level-Set-Funktion auf dem gesamten Netz erfolgt, wird die Struktursimulation
lediglich auf dem Strukturnetz durchgefiihrt. Aufgrund der Neuvernetzungen
muss die Level-Set-Funktion in jeder Iteration reinitialisiert werden. Sobald das
Konvergenzkriterium erreicht ist, liegt die optimierte Struktur in Form eines
Tetraedernetzes vor.
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Abbildung 3-11: Topologieoptimierung mit der Level-Set-Methode bei Verwendung
adaptiver unstrukturierter Netze
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3.6 Optimierungsbeispiele

Als Abschluss dieses Kapitels wird das Optimierungsverfahren an zwei numerischen
Beispielen demonstriert. In beiden Beispielen wird das Optimierungsproblem [3—6
gelost. Aus Griinden der Vergleichbarkeit der numerischen Optimierungsergebnisse
wird die mittlere Nachgiebigkeit normiert. Ist der Entwurfsraum vollsténdig mit
Strukturmaterial ausgefiillt, nimmt die normierte mittlere Nachgiebigkeit den
Wert C'y = 1000 an. Alle verwendeten Optimierungsparameter sind in Tabelle [3—1
aufgelistet. Wie in Abschnitt erlautert, konnen die Lagrange-Multiplikatoren
zu Beginn der Optimierung zu null gesetzt werden. In beiden hier gezeigten
Beispielen wird jedoch von dieser Strategie abgewichen. Die in der Tabelle aufge-
listeten Startwerte basieren auf Erfahrungswerten in der Losung der jeweiligen
Optimierungsaufgabe und befinden sich bereits ndher an ihren optimalen Werten.
Falls die optimalen Werte der Lagrange-Multiplikatoren durch eine vorherige
Optimierung bekannt sind, garantiert deren Wahl als Startwert jedoch nicht, dass
sich die Anzahl benétigter Iterationen reduziert. Dies ist auch davon abhéngig, wie
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viele Entwicklungsschritte der Level-Set-Funktion vor einer erneuten FE-Analyse
durchgefithrt werden. Die FE-Rechnungen werden mit dem Solver OptiStruct®
der Firma Altair durchgefiihrt. Fiir die Vernetzungen wird die ebenfalls von Altair
entwickelte Software HyperMesh® verwendet. Zur automatisierten Umsetzung der
in Kapitel erlauterten Vernetzungsstrategie wird ein selbst entwickeltes Tcl-
Skript genutzt. Das eigentliche Optimierungsverfahren wird in eigens entwickelten
Python-Programmen umgesetzt.

Parameter Symbol Beispiel [3.6.1| Beispiel 3.6.2
Elastizitatsmodul E 1 N/mm? 1 N/mm?
Poisson-Zahl v 0.3 0.3
Konvergenz-Schwellwert Ekonw 0.001 0.001
Lagrange-Multiplikator A0 0.1 0.025
Strafparameter A° 1000 1000
Verstarkungsfaktor o 0.9 0.92
Entwicklungsschritte nrs 40 40
CFL-Zahl CFL 0.3 0.3

Tabelle 3—-1: Verwendete Optimierungs- und Simulationsparameter. Die angegebenen
Parameter des Lagrange-Verfahrens sind die Werte zu Beginn der Optimierung
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Abbildung 3-12: Startentwurf eines zu optimierenden zweidimensionalen Kragtrégers.
Alle Mafe sind in mm angegeben
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3.6.1 Zweidimensionaler Kragtrager

Zunéachst wird der in Abbildung dargestellte zweidimensionale Kragtrager
optimiert. Dieser besitzt eine Breite von 600 mm und eine Hohe von 300 mm. Die
auferen Abmessungen des Kragtriagers sind gleichzeitig die Mafle des rechteckigen
Designraums. An den schraffierten Stellen ist der Trager fest fixiert. Als Belastung
wird entlang der auf der rechten Seite markierten Strecke von 15 mm eine Last
von 10 N/mm aufgebracht. Die Minimierung der mittleren Nachgiebigkeit erfolgt
unter der Restriktion, einen Volumenfiillgrad von Vz = 0.3 zu erreichen.

Startdesign Iteration 10 Iteration 20

Cn (£20) = 1000 = 1233 Cn (Q20) = 2066
Vr (Q) = 1.0 VF (Q ) = 0.76 VF (Q20) = 0.5
Iteration 30 Iteration 40 Iteration 52

Cn (Q30) = 2821 = 2870 Cn (Q52) = 2467

Vr (Q30) = 0.33 Ve ( =0.27 Vi (Q52) = 0.3

Abbildung 3-13: Verlauf der Topologieoptimierung des zweidimensionalen Kragtrigers.
Gezeigt ist die Struktur zu sechs exemplarischen Iterationen

Die Optimierung konvergiert nach insgesamt 52 Iteration. Das ermittelte Optimum
weist eine normierte mittlere Nachgiebigkeit von Cy = 2467 auf. In Abbildung
[B—13]ist ein Auszug aus der Optimierungshistorie zu sechs verschiedenen Iteratio-
nen gezeigt. Darin ist zu erkennen, dass sich die Form der Struktur im Verlauf der
Optimierung einem Stabzweischlag anndhert. Dadurch wird die Biegebeanspru-
chung der Struktur minimiert und weitestgehend in Zug- und Druckbeanspruchung
iiberfiihrt. Bei Zug- und Druckbelastung nimmt eine Struktur weniger Formande-
rungsenergie als bei vergleichbarer Biegebelastung auf. Dies fithrt wiederum zu
einer reduzierten mittleren Nachgiebigkeit. Michell (1904) nutzt dieses mechanische
Verhalten zur Entwicklung der Michell-Strukturen.

Mit der vorgestellten Verfahrensvariante konnen keine Locher zwischen den Struk-
turelementen erzeugt werden. Topologieanderungen sind zwar moglich, jedoch nur
durch die Verschmelzung von Strukturgrenzen. In einem solchen Fall trifft das
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Nullniveau der Level-Set-Funktion beider Grenzbereiche lokal aufeinander. Um
jedoch inmitten von Strukturmaterial Locher zu erzeugen, miisste die Level-Set-
Funktion lokal ansteigen konnen. Die systematische Erzeugung von Loéchern kann
das Optimierungsergebnis deutlich verbessern. Allaire et al. (2004) schlagen deshalb
verschiedene Methoden zu deren Erzeugung vor. Eine Moglichkeit ist, bereits den
Startentwurf mit Lochern zu versehen. Aulerdem ist die Nutzung systematischer
Kriterien zur Lochpositionierung in Form von Topologieableitungen (Garreau
etal. 2001) oder der Bubble-Methode (Eschenauer et al. 1994 denkbar. Welchen
Einfluss die Locherzeugung auf das vorliegende Beispiel hat, ist in Abbildung
B-14] zu sehen. Hier wurde der Startentwurf mit Lochern versehen. Dieser besitzt
daher zu Beginn der Optimierung eine normierte mittlere Nachgiebigkeit von
Cn = 1578. Die mit diesem Startentwurf durchgefiihrte Optimierung konvergiert
nach 54 Iterationen. Im gefundenen Optimum weist die Struktur eine normierte
mittlere Nachgiebigkeit von Cy = 2134 auf. Dies ist damit das beste erzielte
Design dieses Beispiels.

Startdesign Iteration 54

Cy (Q) = 1578 Vi (Q0) = 0.75 Cy (s4) = 2134 Vi (Q54) = 0.3

Abbildung 3-14: Topologieoptimierung des zweidimensionalen Kragtriagers mit der
Vorgabe von Lochern im Startentwurf

3.6.2 Dreidimensionaler Kragtrager

Als zweites Beispiel wird die Topologieoptimierung des in Abbildung gezeig-
ten dreidimensionalen Kragtragers demonstriert. Dieser besitzt eine Breite von
900 mm, eine Hohe von 300 mm sowie eine Tiefe von 300 mm. Auch in diesem
Beispiel markieren die d&ufleren Mafle des Tragers die Grenzen des quaderféormigen
Designraums. Der Kragtrager ist an den vier schraffierten quadratischen Fléchen
fest fixiert. Auf der Vorderseite wird eine Flichenlast von 0.1 N/mm? iiber die
markierte quadratische Flache aufgebracht. Im vorherigen Beispiel wurde gezeigt,
dass die Vorgabe von Lochern im Startdesign zu besseren Optimierungsergebnissen
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fithren kann. Von daher wird das Startdesign mit den in Abbildung [3-15| (rechts)
gezeigten, symmetrisch entlang der Langsachse verteilten kugelféormigen Ausspa-
rungen versehen. Diese besitzen einen Durchmesser von 100 mm und fithren dazu,
dass der Startentwurf eine normierte mittlere Nachgiebigkeit von Cy = 1019 auf-
weist. Die Minimierung der mittleren Nachgiebigkeit erfolgt unter der Restriktion,
einen Volumenfiillgrad von Vz = 0.15 zu erreichen.
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Abbildung 3-15: Startentwurf eines zu optimierenden dreidimensionalen Kragtrégers.
Alle MaBe sind in mm angegeben

In Abbildung ist die Entwicklung der Struktur zu sechs exemplarischen
[terationen gezeigt. Aulerdem sind die Verldufe der Zielfunktion und der Volu-
menrestriktion wiahrend der Optimierung abgebildet. Die Optimierung konvergiert
nach 79 Iterationen. Im gefundenen Optimum besitzt die Struktur eine normierte
mittlere Nachgiebigkeit von Cy = 3049. In diesem Beispiel wird deutlich, wie
Topologieanderungen mithilfe der Level-Set-Methode vollzogen werden. Ersichtlich
ist dies z. B. in Iteration 22. Dort verschmelzen die dufleren mit den inneren
Strukturgrenzen. Letztere Grenzen stammen von den kugelférmigen Aussparungen
im Startdesign. Das Zusammentreffen des Nullniveaus der Level-Set-Funktion kann
auch zum Abtrennen von Material fithren. Dieser Effekt ist in Iteration 29 zu sehen.
Wird die Restriktion um weniger als 5 % verletzt, wird die Diskretisierung um
25 % erhoht bzw. die ElementgroBe um 25 % reduziert. Dadurch ist die Oberflache
der Struktur in der letzten Iteration deutlich glatter als in Iteration 45.

In dreidimensionalen Anwendungen besteht durch die zuséatzliche Raumdimension
die Moglichkeit, dass Locher auch ohne den Einsatz der zuvor beschriebenen
Locherzeugungsmethoden ausgebildet werden kénnen. Werden beispielsweise im
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Cn ()

Iteration 5
Cn (Q25) = 1372

Iteration 22
Cn (22) = 7595

Iteration 45
Cn (Q45) = 4833

Iteration 15
Cn (Q15) = 3252

Iteration 29
Cn (Q29) = 8201

Iteration 79
Cn (Q79) = 3049
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Abbildung 3-16: Topologieoptimierung des dreidimensionalen Kragtragers. Gezeigt ist

die Entwicklung der Struktur zu sechs exemplarischen Iterationen
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Startentwurf des Kragtriagers keine Aussparungen vorgegeben, wiirde der in Itera-
tion 22 auftretende Effekt in dhnlicher Weise zur Entstehung von Lochern fiihren.
Eine so durchgefiihrte Optimierung des Kragtrégers fithrt zu der in Abbildung
gezeigten Struktur. In diesem Beispiel zieht sich die Struktur lokal zusammen,
bis es zu einem Aufeinandertreffen des Nullniveaus der Level-Set-Funktion entlang
der y-Richtung kommt. Durch die Verschmelzung der Strukturrander entsteht
das Loch in der Struktur. Mit einer erzielten normierten mittleren Nachgiebigkeit
von Cy = 3123 nach insgesamt 68 Iterationen ist das resultierende Design jedoch
schlechter als bei der vorherigen Optimierung. Um die Ausbildung schwacher loka-
ler Minima zu vermeiden, werden daher auch bei dreidimensionalen Anwendungen
haufig Aussparungen im Startentwurf vorgegeben.

ldd e
z
L{y
x

Abbildung 3-17: Topologieoptimierung des dreidimensionalen Kragtragers ohne Vorgabe
von Lochern im Startentwurf

Cn (Qgs) = 3123






4 Integration von Frasrestriktionen
in die Level-Set-Optimierung

Um die direkte Herstellbarkeit von optimierten Strukturen gewéhrleisten zu kon-
nen, miissen Fertigungsrestriktionen in das Optimierungsverfahren integriert wer-
den. Welchen Restriktionen Frasverfahren unterliegen, ist bereits in Kapitel
beschrieben worden. Im Folgenden wird erlautert, wie diese Restriktionen in
die Topologieoptimierung mit der Level-Set-Methode integriert werden kénnen.
Die hier vorgestellten Ergebnisse sind im Rahmen der Forschungsarbeiten dieser
Dissertation entstanden (siche auch Colling et al. (2024))).

4.1 Ansatz zur Erfiillung der Fertigungsrestriktionen

Als Ansatz zur Erfilllung der Zugénglichkeitsrestriktion wird in dieser Arbeit das
Ziel verfolgt, wahrend einer Optimierung in den entstehenden unzuginglichen
Strukturbereichen einen ,Wachstumsdruck® zu erzeugen. Dieser wird im weiteren
Verlauf auf die Minimierung einer Restriktionsfunktion zuriickgefiithrt. Mithilfe
einer Sensitivitatsanalyse werden die Entwicklungsgeschwindigkeiten um die Sen-
sitivitaten der Restriktionsfunktion erweitert. Unzugéngliche Strukturbereiche
konnen dann im Verlauf einer Optimierung entstehen, werden aber bis zu einer
moglichen Konvergenz des Verfahrens vollstandig eliminiert.

Zur Verdeutlichung sei an dieser Stelle erneut auf Abbildung verwiesen. Die
gezeigte Struktur wird mit dem abgebildeten Werkzeug frasbar, wenn samtliche
unzuganglichen Bereiche mit Strukturmaterial ausgefiillt werden. Das Ausfillen
dieser Bereiche soll mithilfe des induzierten Strukturwachstums geschehen. Um
die gezeigte Struktur frasbar zu gestalten, ist es jedoch auch denkbar, das iiber
den unzuginglichen Bereichen befindliche Material zu entfernen. Dies konnte
durch ein induziertes Schrumpfen der Struktur in den entsprechenden Bereichen
bewerkstelligt werden. Ein solcher Schrumpfungseffekt tritt jedoch auf ,natiirliche’
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Weise bei der Induktion eines Strukturwachstums bei der Losung der Optimie-
rungsaufgabe aus Kapitel auf. Der Grund dafiir ist, dass ein Wachstum in
den unzuganglichen Bereichen zu einer Erhohung des Strukturvolumens fiihrt.
Zur Erfillung der Volumenrestriktion muss an anderer Stelle das Volumen wieder
reduziert werden. An welchen Stellen der Struktur das Volumen verringert wird
bzw. ein Schrumpfen einsetzt, geschieht dann im Sinne der Optimierungsaufgabe
auf der Grundlage der vorliegenden Sensitivitédten.

Ein induziertes Strukturwachstum wird ebenfalls zur Integration der Wandstérken-
restriktion untersucht. Das Ziel ist, dinnwandige, restriktionsverletzende Bereiche
zu verdicken. Dabei muss analysiert werden, in welchem Mafle dadurch Topologie-
anderungen gehemmt werden. Da die Integration beider Fertigungsrestriktionen
auf dem gleichen Ansatz beruht, werden diese im Verlauf des Kapitels in eine
gemeinsame mathematische Restriktion iiberfiihrt.

4.2 Erkennung von Restriktionsverletzungen

Fiir die Induktion des beschriebenen Strukturwachstums ist es zunachst erforder-
lich, die unzuganglichen Strukturbereiche zu lokalisieren. Die Detektion solcher
Bereiche ist ein wesentlicher Bestandteil von CAM-Software (Computer Aided
Manufacturing) und wird im Rahmen der kollisionsfreien Erzeugung von Werkzeug-
wegen eingesetzt (Choi 2001)). In dieser Arbeit wird die Detektion der unzugéngli-
chen Strukturbereiche ausschliefllich auf FE-Netzen durchgefiihrt. Dazu wird im
Folgenden ein Verfahren eingefiihrt, bei dem die Level-Set-Funktion ausgehend von
Bearbeitungspunkten auf der Strukturoberflache entlang der Auflenkonturen eines
Fraswerkzeugs, dessen Halterung sowie der Hauptspindel interpoliert wird. Die
Vorzeichen der interpolierten Level-Set-Funktionswerte geben Aufschluss dartiber,
ob ein Bearbeitungspunkt zugénglich ist oder nicht. Wie die folgenden Abschnitte
zeigen, konnen damit beliebige Werkzeuggeometrien unter vergleichsweise gerin-
gem numerischen Aufwand beriicksichtigt werden. Auflerdem kann das Verfahren
zur Detektion diinnwandiger Strukturen eingesetzt werden. Unzugéngliche und
zu diinne Bereiche werden im weiteren Verlauf héufig als restriktionsverletzende
Bereiche zusammengefasst.

Grundsétzlich ist fiir eine solche Detektion auch der Einsatz eines Raycast-
Algorithmus denkbar. Auf Basis des entwickelten Interpolationsverfahrens kénnte
dies durch mehrere verkettete Strahlen vollzogen werden, die ausgehend von der
Strukturoberflache die Auflenkontur des Friaswerkzeugs abbilden. Dabei wiirden
fiir jeden Teilstrahl potenzielle Schnittpunkte mit dem FE-Netz der Struktur
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Abbildung 4-1: Identifizierung unzugénglicher Bereiche iiber die Interpolation der
Level-Set-Funktion am Beispiel gerader Interpolationswege

bestimmt. Der numerische Aufwand zur Berechnung solcher Punkte steigt jedoch
mit feiner werdender Diskretisierung stark an. Fiir eine effiziente Anwendung
des Verfahrens sind daher vergleichsweise aufwendige Zusatzalgorithmen notig.
Zur Reduktion des numerischen Rechenaufwands konnte man z. B. das FE-Netz
in mehrere volumetrische Abschnitte unterteilen und vorab iiberpriifen, welche
Abschnitte ein betrachteter Strahl schneidet.

4.2.1 Werkzeugzuganglichkeit

Das im Folgenden eingefiihrte Verfahren zur Uberpriifung der Werkzeugzuging-
lichkeit wird separat fir jede nutzbare Bearbeitungsrichtung durchgefiihrt. Zur
Veranschaulichung dient Abbildung [4—1] Darin ist eine mechanische Struktur
dargestellt, die aus zwei Bearbeitungsrichtungen gefertigt werden soll. Dazu zéhlen
einerseits die —y-Richtung (links) und anderseits die z-Richtung (rechts).

Zunéchst werden Interpolationswege definiert. Diese verlaufen von den Randpunk-
ten der Struktur entgegen der Bearbeitungsrichtung bis zur Designraumgrenze.
Auf jedem der Wege wird eine Interpolationsrichtung vorgegeben. Fiir diese wird
die negative Bearbeitungsrichtung gewéhlt. Anschlielend wird entlang der In-
terpolationswege in diskreten Schrittweiten die Level-Set-Funktion interpoliert.
Gemafl Gleichung sind dabei die folgenden Falle zu unterscheiden: Tritt am
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Abbildung 4-2: Anpassung des Interpolationsweges an die Geometrie von Werkzeug,
Werkzeughalterung und Hauptspindel (links). Bei einer Kollision (rechts) wird der
Randpunkt als unzugénglich markiert

Interpolationspunkt ein negativer Wert auf — d. h. die Interpolation erfolgte in der
Struktur — ist der zugrunde liegende Randpunkt aus der aktuellen Bearbeitungs-
richtung unzugénglich. Wie am Interpolationsweg a) ersichtlich, wird dieser dann
aus der weiteren Berechnung entfernt. Ein Randpunkt ist aus der aktuellen Bearbei-
tungsrichtung zugénglich, falls auf seinem Interpolationsweg kein negativer Wert
auftritt. Einen solchen Fall reprasentiert z. B. der Interpolationsweg b). Sobald
eine Interpolation auflerhalb des Designraums stattfindet, wird der dazugehorige
Randpunkt als zugénglich markiert. Das Verfahren ist fiir die aktuelle Bearbei-
tungsrichtung abgeschlossen, sobald alle Randpunkte entweder als zuganglich oder
unzuganglich markiert sind. Falls zuvor Randpunkte als unzuganglich erkannt
wurden, wird das Verfahren mit der nachsten verfiigharen Bearbeitungsrichtung
wiederholt (siche Abbildung [A-1] rechts). Dazu werden jedoch nur noch die bis
dahin unzuganglichen Randpunkte betrachtet.

Zur Integration der Werkzeuggeometrie werden die Interpolationswege nun veran-
dert. Anstatt einzelner gerader Linien werden zur Interpolation die Aulenkonturen
eines Fraswerkzeugs, seiner Halterung und der Hauptspindel gewahlt. Die an jedem
Randpunkt neu entstehenden Interpolationswege sind in Abbildung (links)
gezeigt. Zur vollstandigen Abbildung der Aulenkonturen werden pro Randpunkt
zwei Interpolationswege verwendet. Bei dreidimensionalen Anwendungen werden
vier symmetrisch um den Umfang verteilte Wege eingesetzt. Die in der Abbildung
gezeigten Werkzeugbereiche werden fiir den weiteren Verlauf in die folgenden vier
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Bereiche unterteilt:

e Bereich A: Interpolation von der Unterseite des Fraswerkzeugs bis zur
Unterseite der Werkzeughalterung.

o Bereich B: Interpolation entlang der breiter werdenden Werkzeughalterung.

« Bereich C: Interpolation entlang des Aulendurchmessers der Werkzeughal-
terung.

o Bereich D: Interpolation entlang der Auflenverkleidung der Hauptspindel
und des zugelassenen Verfahrwegs in axialer Richtung.

Damit ein Randpunkt als zuganglich markiert wird, miissen alle Interpolationswege
in den Bereichen A-D kollisionsfrei die Designraumgrenze erreichen (Abbildung
-2 mittig). Kollidiert einer der Wege mit der Struktur, wird der Randpunkt als
unzugénglich markiert (Abbildung 42| rechts). Im Bereich D wird die Aufienver-
kleidung der axial beweglichen Hauptspindel modelliert. Diese wurde in keiner
Arbeit der in Abschnitt [2.4]aufgefithrten Forschungshistorie berticksichtigt. Es kann
jedoch bei sehr sperrigen Strukturen zu Kollisionen zwischen der Hauptspindel
und der Struktur kommen. Gleichzeitig wird in Bereich D ein maximal zulassiger
axialer Verfahrweg der Hauptspindel definiert. Dadurch kann beispielsweise die
Einhaltung einer restlichen Materialschicht zum Maschinentisch berticksichtigt
werden. Liegt die Oberkante der modellierten Hauptspindel im Designraum und
ist deren Abstand zur Designraumgrenze grofler als der zuléssige Verfahrweg, wird
der Randpunkt als unzugénglich markiert.

4.2.2 Diinnwandige Strukturbereiche

Als Definition der Wandstérken wird die von Allaire et al. (2016) verwendete For-
mulierung genutzt. Das Prinzip ist in Abbildung gezeigt. An dieser Stelle sei
noch einmal darauf hingewiesen, dass durch die Level-Set-Funktion die nach auflen
orientierten Normaleneinheitsvektoren des Strukturrandes bekannt sind (siehe
Gleichung [3-22). Ausgehend von jedem Randpunkt werden Geraden eingefiihrt, die
in Richtung der negativen Normaleneinheitsvektoren bis zu ihren Schnittpunkten
mit dem Strukturrand oder der Designraumgrenze gezogen werden. Die jeweilige
Lange der Geraden wird als Maf3 der vorliegenden Wandstéarke gewahlt.

Um nun Bereiche zu identifizieren, an denen zu diitnne Wandstéarken vorliegen,
wird ebenfalls eine Interpolation der Level-Set-Funktion an spezifischen Punkten
vollfiihrt. In Abbildung ist die Funktionsweise dargestellt. Die Koordinaten
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[ ] Struktur @ Randpunkt A Normaleneinheitsvektor

Abbildung 4-3: Definition der Wandstéirke an den Randpunkten mithilfe von Geraden
orientiert in negativer Richtung ihrer Normaleneinheitsvektoren

der Interpolationspunkte ergeben sich ausgehend von den betrachteten Rand-
punkten aus den negativen Normaleneinheitsvektoren, multipliziert mit einer
Mindestwandstérke w,y,;,. Ist der interpolierte Wert der Level-Set-Funktion grofier
als null, liegt der Interpolationspunkt auflerhalb der Struktur. Dies bedeutet,
dass die dem Randpunkt zugeordnete Wandstarke zu gering ist. Ein negativer
Funktionswert lasst wiederum auf eine ausreichende Wandstéarke schlieflen. Aus
Griinden der Ubersichtlichkeit ist das Verfahren in Abbildung in zwei Schritte
unterteilt. In seiner numerischen Umsetzung wird dieses in einem gemeinsamen

Schritt ausgefiihrt.

@ Wandstirke zu gering 98 Interpolation auBerhalb der Struktur
@ Wandstirke ausreichend / Normaleneinheitsvektor |:| Struktur

Abbildung 4-4: Identifikation zu diinner Strukturbereiche. Zur Ubersichtlichkeit ist die
in einem Schritt stattfindende Interpolation in zwei Grafiken gezeigt
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Abbildung 4-5: Verteilung der Interpolationspunkte im Bereich A

4.2.3 Definition der Interpolationswege

In diesem Kapitel wird erlautert, wie die zuvor eingefithrten Interpolationswege
in den Bereichen A, B, C und D mathematisch beschrieben werden. Die For-
mulierung der Interpolationswege erfolgt allgemein fiir den dreidimensionalen
Anwendungsfall. Es wird vorausgesetzt, dass eine Bearbeitungsrichtung parallel zu
einer Koordinatenachse orientiert ist. Eine Bearbeitungsrichtung wird im weiteren
Verlauf als ein in die jeweilige Richtung zeigender Einheitsvektor b beschrieben.

Bereich A

In Abbildung ist dargestellt, wie die Interpolationswege im Bereich A verlaufen.
Dazu ist auf der linken Seite ein Fraswerkzeug abgebildet, mit dessen Hilfe ein
Randpunkt an den Koordinaten @, bearbeitet wird. Auf dem Fréaswerkzeug sind
Interpolationspunkte gekennzeichnet, die in n 4 Interpolationsschritten durchlaufen
werden. In der mittig oben gezeigten Draufsicht ist zu erkennen, dass die vier
Interpolationswege symmetrisch iiber den Umfang verteilt sind. Jeder der vier
Wege besitzt einen Startpunkt. Die Positionen der vier Startpunkte 0-3 sind
abhéngig von der Orientierung des Strukturrandes am Bearbeitungspunkt. Die
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dortige Flachenorientierung wird durch den Normaleneinheitsvektor n erfasst.
Zur Berechnung der unbekannten Startpunkte wird der Normaleneinheitsvektor
auf die Unterseite des zylindrischen Teils des Friswerkzeugs abgebildet. Der
resultierende Vektor wird darauthin auf eins normiert. Fiir eine vorgegebene
Bearbeitungsrichtung ergibt sich der beschriebene Einheitsvektor e; dann zu

c. — n—((n-b)b

) mit ¢ =0.99. (4-1)

In dieser Gleichung wird der Faktor ( eingefiithrt, um eine Division durch null im
Fall von n-b =1 oder n - b = —1 zu vermeiden. Mithilfe dieses Einheitsvektors
werden nun vier weitere, um jeweils 90° versetzte Einheitsvektoren e,; definiert.
Diese sind ausgehend vom Mittelpunkt der zylindrischen Unterseite des Fraswerk-
zeugs in Richtung eines Startpunktes orientiert. Dazu wird der Einheitsvektor e
mithilfe einer Drehmatrix R, um die aktuelle Bearbeitungsrichtung rotiert. Die
verwendeten Drehmatrizen sind im Anhang [C] zu finden. Auf der mittig unten
gezeigten Draufsicht in Abbildung sind die vier entstehenden Vektoren zu
sehen. Die gewéahlte Darstellung gilt fiir eine allgemein orientierte Fliche. Beriick-
sichtigt man nun, dass einerseits e, = —e; und anderseits e, = e, gilt, konnen
die Koordinaten der vier Startpunkte berechnet werden. Zunéchst werden jedoch
die Koordinaten des Mittelpunkts der zylindrischen Unterseite des Werkzeugs x,,
bendtigt. Diese ergeben sich aus der Beziehung

Ty = T + N . (4*2)

Darin beschreibt r;, den Radius des Werkzeugkopfs. Der erste Interpolationspunkt
liegt an der Spitze des Werkzeugkopfs und besitzt die Koordinaten ax;. Formal
ergeben sich diese aus

Xy = T, + bry, . (4*3)

Schliefilich ergeben sich fiir die darauf folgende Interpolation entlang der vier
Interpolationswege unter Zuhilfenahme des Radius des Fraswerkzeugs r, die
folgenden Startpunkte zum Interpolationsschritt j = 0:

wA,o =Ty — €Ty =Ty + €Ty

J=0 _ _
wA,l =Ty, + Rb (2> €Ty = Ty + €417y

=0 (4*4)
m,472 =Ty + €Ty =Ty + €Ty

j=0

™
Aszwm—Rb 5 €Ty :wm‘i‘ergrw.
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Werden die Interpolationspunkte in insgesamt n4 Schritten mit ny4 > 2 um die
Schrittweite Ax 4 in die negative Bearbeitungsrichtung verschoben, ergeben sich
die Koordinaten der ¢ Interpolationswege zum Interpolationsschritt j zu

J_

. l
ol =al ) —jAzab mit j=0,1,...n4—1 und Azy=—" o (49)
I ) nA_

Darin beziffert [y die Lange der Strecke von der Unterseite des zylindrischen Teils
des Fraswerkzeugs bis zur Unterseite der Werkzeughalterung.

Bereich B

Die Verteilung der Interpolationspunkte im Bereich B ist in Abbildung darge-
stellt. Dazu ist eine Werkzeughalterung abgebildet, die einen kegelférmigen sowie
einen zylindrischen Teil besitzt. Ersterer wird im Bereich B erfasst.

Nach dem Durchschreiten von Bereich A liegen die Interpolationspunkte gerade
auf Hohe der Unterseite der Werkzeughalterung. Zu diesem Zeitpunkt liegen die
Punkte noch am Umfang des Fraswerkzeugs an. Die Startpunkte des Bereichs B
liegen auf dem Umfang der kreisformigen Unterseite der Werkzeughalterung (siehe
Abbildung , rechts). Aus diesem Grund werden die vier zuletzt interpolierten
Punkte in die Richtungen e,; um den Betrag a; verschoben. Die ¢ Startpunkte
lauten dann

w%jo = wifim_l + e ia . (4-6)
Anschlielend erfolgt die Interpolation entlang des kegelférmigen Abschnitts der
Werkzeughalterung. Dieser besitzt die Hohe ;. Der Radius der Querschnittsflache
erhoht sich von Unter- zu Oberseite um den Betrag ay. Bei insgesamt np Schritten
mit np > 2 und der Schrittweite Az p gilt dann fiir die Interpolationswege

- - e,;as — bl
T, = 33?9_,1'0 —( = )

)

A
|€TZ'CL2 — bl1| Jors

mit j=0,1,....,np—1 und Azp= wp 1

Bereich C

Im Bereich C wird der zylindrische Teil der Werkzeughalterung modelliert (Abbil-
dung |4-6)). Die Verlaufe der Interpolationswege werden tiber das gleiche Schema
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Abbildung 4-6: Verteilung der Interpolationspunkte in den Bereichen B und C. Aus
Darstellungsgriinden ist die Hauptspindel nicht eingezeichnet

wie in Bereich A erfasst. Die Startpunkte der i Interpolationswege sind die zuletzt
interpolierten Punkte aus Bereich B

=0 j=np—1
To =®p (4-8)

Die Interpolation wird in Richtung der negativen Bearbeitungsrichtung iiber die
Léange 5 in ne Schritten durchgefiihrt. Bei einer Schrittweite Aze mit ne Schritten
und ng > 2 ergeben sich die Koordinaten der Interpolationspunkte als

[

xl; =5, —jAzch mit j=0,1,.,nc—1 und Azc= . (4-9)

nc—l

Bereich D

Zur Modellierung der Hauptspindel werden die zuletzt errechneten Interpolations-
punkte aus Bereich C in die Richtungen e,; um den Betrag a3 verschoben (siehe
Abbildung [4-7] rechts). Daraus ergeben sich die Koordinaten der i Startpunkte
im Bereich D als

w‘FZO = a:j(inc_l + epiaz. (4-10)
Die Interpolation erfolgt entlang der Auflenkontur der Hauptspindel tiber die
Hohe 3. Das Werkzeug ist entlang der Strecke s, axial verfahrbar. Fiir np Schrit-

te mit np > 2 und einer Schrittweite Axp ergeben sich die Koordinaten der
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Abbildung 4-7: Verteilung der Interpolationspunkte im Bereich D

Interpolationspunkte zu

l3+SfU
nD—l'

x),; = xh; —jArpb mit j=0,1,..,np—1 und Azp=

(4-11)

Erfassung diinnwandiger Strukturbereiche

Zur Detektion diinnwandiger Strukturbereiche sei erneut auf Abbildung ver-
wiesen. Darin wird verdeutlicht, dass zur Positionierung der Interpolationspunkte
die Orientierung des Randes genutzt wird. Uber den gesamten Strukturrand wer-
den Interpolationspunkte in negativer Normalenrichtung definiert. Diese werden
so positioniert, dass ihr Abstand zu den zugehorigen Randpunkten der Min-
destwandstarke entspricht. Oftmals reicht dieses Verfahren nicht zur Erkennung
diinnwandiger Strukturen aus. In Abbildung [4—§|ist gezeigt, in welchen Situationen
diese Problematik auftritt.

Wie in Abbildung zu sehen ist, konnen Spalten, die dinner als die Mindest-
wandstarke sind, nicht erkannt werden. Den anliegenden Randpunkten wiirde das
Verfahren dennoch eine ausreichende Wandstarke beziffern. Um diesem Problem
entgegenzuwirken, konnen mehrere Interpolationspunkte eingesetzt werden. Damit
steigt die Wahrscheinlichkeit, dass mindestens ein Punkt im Spalt liegt und dieser
daher entdeckt wird. Die Interpolation erfolgt dann in insgesamt n,, Schritten bei
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Designraumgrenze

Problem Losung Problem Losung
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(a) Erkennung diinner Spalten (b) Erfassung der Designraumgrenzen
[ ] Struktur O Interpolationspunkt @ Wandstarke zu gering

8 Interpolation auBerhalb der Struktur @ Wandstirke ausreichend

Abbildung 4-8: Einfluss der Anzahl von Interpolationspunkten auf die Erkennung
diinner Spalten und die Erfassung der Wandstédrke an der Designraumgrenze

einer Schrittweite Az, Uber die Mindestwandstéarke w,,;,. Die Koordinaten der
Interpolationspunkte x,, an einem Randpunkt «, ergeben sich zu

2l =z, — jAryn mit j=1,2,..,np und Az, = 7"’7;”” L (412)
w

In Abbildung ist ein weiteres Problem dargestellt, dass bei gekrimmten
Réndern in der Néhe der Designraumgrenze auftritt. Links besitzen die Punk-
te auf dem gekriimmten Rand eine ausreichende Wandstarke. Dartiber liegen
Randpunkte, deren Normalen den gekriimmten Bereich durchkreuzen und mit
einer unzureichenden Wandstérke markiert werden. Zur Vermeidung diinner Struk-
turbereiche wird ein Strukturwachstum an den rot markierten Stellen induziert.
Da die entsprechenden Punkte jedoch auf den Designraumgrenzen liegen, wird
ein Wachstum dort blockiert. Rechts ist gezeigt, wie dieses Problem behoben
wird. Liegen Randpunkte auf der Designraumgrenze, werden fiir diese mehrere
Interpolationspunkte eingesetzt. Interpolationspunkte, die aulerhalb der Struktur
liegen, werden in einer umhiillenden Box zusammengefasst (gestrichelte Box).
Daraufhin werden alle Randpunkte, die sich innerhalb der Box befinden, mit einer
unzureichenden Wandstéarke gekennzeichnet. Die Grofle der Box hangt von der
Schrittweite Ax,, und dem Abstand benachbarter Randpunkte ab — beispielsweise
dem Knotenabstand im FE-Gitter.
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4.3 Mathematische Formulierung der
Fertigungsrestriktionen

In den folgenden Abschnitten wird konkretisiert, wie ein Strukturwachstum in den
restriktionsverletzenden Bereichen induziert wird. Dazu werden die in Kapitel
beschriebenen Fertigungsrestriktionen in mathematisch zu beziffernde Ausdriicke
bzw. Restriktionsfunktionen iiberfiihrt. Wie in Kapitel |3| erldutert, konnen dann
Sensitivitaten dieser Restriktionen beziiglich Verschiebungen des Strukturrandes
bestimmt und in eine Entwicklung der Level-Set-Funktion iiberfiithrt werden.

4.3.1 Uberfiihrung der Fertigungsrestriktionen in ein Potential

Der entwickelte Ansatz zur Erzeugung des Strukturwachstums beruht auf einer
Analogie aus der Mechanik. Setzt man eine frei bewegliche Masse einem Gravita-
tionsfeld aus, wird diese beschleunigt. Die Beschleunigung ist stets so gerichtet,
dass deren Gravitationspotential reduziert wird (Gross et al. [2012)). In Abbildung
ist eine Kugel auf einer schiefen Ebene zu zwei verschiedenen Zeitpunkten
gezeichnet. Durch die Reduktion des Gravitationspotentials W der Kugel verén-
dert sich ihre z-Koordinate. Ubertrigt man dieses Prinzip auf die Entwicklung
einer Level-Set-Funktion, konnte durch die Reduktion eines Potentials auf dem
Nullniveau eine Verschiebung der Strukturgrenze induziert werden. Wie bei der
Kugel wiirde sich die Strukturgrenze in Richtung kleiner werdender Potentialwerte
bewegen. Eine Bewegung in die entgegengesetzte Richtung ist nur durch die Zufuhr
von Energie moglich. In der Analogie ist diese ,Energie’ mit den Sensitivititen
aus der Topologieoptimierung gleichzusetzen.

Y4

Abbildung 4-9: Verschiebung des Strukturrandes tiber die Minimierung eines Potentials.
In der Analogie beschreibt die z-Koordinate der Kugel die Position des Strukturrandes
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Um ein Strukturwachstum in den restriktionsverletzenden Bereichen anzuregen,
wird nun eine Potentialfunktion p (x) definiert, die jedem Punkt des Designraums
ein Potential zuweist. Folgende Eigenschaften soll das gesuchte Potential erfiillen:

e Zum Zeitpunkt ¢ = 0 soll der Strukturrand das Potential ¢ € R annehmen.

o Das Potential soll sich auf normal zum Strukturrand orientierten Geraden
linear andern.

e Innerhalb der Struktur soll das Potential groflere Werte als auflerhalb der
Struktur annehmen.

o Das Potential soll von der Strukturentwicklung entkoppelt sein.

Zur Definition einer Potentialfunktion mit den genannten Eigenschaften wird die
als vorzeichenbehaftete Abstandsfunktion initialisierte Level-Set-Funktion genutzt.
Wie in Abschnitt beschrieben, besitzt diese bereits die Eigenschaft der
Linearitat. Subtrahiert man die Abstandsfunktion zu einem diskreten Zeitpunkt
¢o () vom Randpotential €, konnen alle geforderten Eigenschaften mathematisch
ausgedriickt werden als

p(@)=c—po(@) mit @l t=0)=g. (4-13)

Das Ziel ist es nun, eine Verschiebung des Strukturrandes iiber eine Reduktion
des auf dem Strukturrand vorliegenden Potentials zu initiieren. In Abbildung
ist das Prinzip fiir den Randbereich eines Stabs dargestellt. Darin ist die
Potentialfunktion (blau) des Stabs fiir drei aufeinanderfolgende Entwicklungs-
schritte gezeigt. Zum Zeitpunkt ¢y wird die Potentialfunktion initialisiert. Das
Randpotential nimmt zu diesem Zeitpunkt den Wert € an. Um das Randpotential
zu reduzieren, muss sich der Randpunkt nach rechts bzw. nach auflen bewegen. So
besitzt das Potential zum Zeitpunkt ¢; und ¢, jeweils niedrigere Werte als in den
vorangegangenen Zeitschritten. Als Eigenschaft fiir die Potentialfunktion wurde
gefordert, dass diese nicht mit der Strukturentwicklung gekoppelt ist. Wére dies
der Fall, wiirde die Potentialfunktion der Strukturgrenze ,folgen‘. Dann wiirde
auf der Grenze stets das Potential € vorliegen. Ein Strukturwachstum durch eine
Potentialreduktion ware dann nicht moglich.

Auf dem Strukturrand I' wird das Potential nun allgemein mithilfe eines Aktivie-
rungsfaktors 1 durch ein Randfunktional U (€2) beschrieben

U(Q) = [ np@)dl = [ n(e = o (@))dl. (4-14)

Das Strukturwachstum soll nur auf Randbereichen induziert werden, an denen
die Fertigungsrestriktionen verletzt sind. Diese werden im weiteren Verlauf als I'g
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Abbildung 4-10: Darstellung der Potentialfunktion einer eindimensionalen Struktur zu
drei verschiedenen Zeitpunkten ty < t; < t5. Der Randpunkt bewegt sich nach auflen

bezeichnet und durch das in Kapitel beschriebene Verfahren ermittelt. Um
restriktionsverletzende Randbereiche von den iibrigen Randbereichen zu trennen,
wird der Aktivierungsfaktor definiert als:

1 fallsT'eTlg,
n= (4-15)
0 fallsI'¢I'g.

Fiir € = 1 entspricht der Wert des Randfunktionals gerade dem Betrag der Flache,
die nicht zuganglich oder Teil von zu diinnen Strukturbereichen ist. Dadurch
sind beide Restriktionen in eine gemeinsame Restriktionsfunktion iiberfiithrt. Die
Fertigungsrestriktionen gelten als erfiillt, sobald das Randfunktional U (£2) den
Wert null annimmt. Fiir ein gefundenes Optimum €,,; gilt dann

U (Qupt) = [ 0= = po (@) dl = 0. (4-16)

4.3.2 Reinitialisierung des Potentials

Durch das induzierte Wachstum verédndert sich wahrend der Optimierung der
Anteil der Oberfliche, an der die Fertigungsrestriktionen verletzt sind. Im Rahmen
der Strukturentwicklung werden sich solche Randbereiche zu zuganglichen oder
ausreichend dicken Bereichen ausbilden. Es kann aber auch vorkommen, dass zu-
nachst zugéngliche oder ausreichend dicke Bereiche nach einer Randverschiebung
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Abbildung 4-11: Reinitialiserung der Potentialfunktion nach erneuter Detektion der
Bereiche, an denen eine der Fertigungsrestriktionen verletzt ist

eine der beiden Fertigungsrestriktionen nicht mehr erfiillen. Damit das Struktur-
wachstum nur in restriktionsverletzenden Bereichen induziert wird, muss in jeder
Iteration eine erneute Detektion dieser Bereiche erfolgen.

Auch die ,konstante’ Potentialfunktion muss in regelméffigen Intervallen reinitiali-
siert werden. Dies gewéahrleistet, dass einerseits deren Gradient moglichst gut die
aktuellste Orientierung des Strukturrandes abbildet und anderseits ein Wachstum
auch nach Topologieanderungen korrekt induziert wird. Die Vorgehensweise ist
in Abbildung dargestellt. Auf der linken Seite ist eine Potentialfunktion zur
[teration ¢ direkt vor ihrer Reinitialisierung gezeigt. Nach der erneuten Detektion
von Bereichen, an denen die Fertigungsrestriktionen verletzt sind, wird das Po-
tential der Randpunkte geméfl Gleichung wieder auf den Wert ¢ angehoben.
Zur Reinitialisierung wird die zur nachsten Iteration ¢ 4+ 1 vorliegende Level-Set-

o genutzt. Ein geeigneter Zeitpunkt zur Reinitialisierung der

Funktion ¢q ()
Potentialfunktion liegt vor, wenn die Level-Set-Funktion ebenfalls reinitialisiert
wird. Wie in Kapitel erlautert, erfiillt die Level-Set-Funktion dann best-
moglich die Eigenschaften der vorzeichenbehafteten Abstandsfunktion. Falls der
zeitliche Abstand zwischen zwei Reinitialisierungen der Level-Set-Funktion zu grof§
ist, muss die Potentialfunktion auch zwischen diesen Zeitpunkten neu bestimmt

werden.

4.4 Sensitivitatsanalyse

Zur Erfillung der als Randfunktional (Gleichung [4-16)) formulierten Fertigungsre-
striktionen werden deren Sensitivitaten beziiglich Anderungen des Strukturrandes
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benotigt. Da die Potentialfunktion von der Strukturentwicklung entkoppelt ist,
gestaltet sich die Berechnung der Formableitung als vergleichsweise einfach. Die
allgemeine Formableitung fiir ein Randfunktional (Gleichung wird in Ab-
schnitt eingefiihrt und naher diskutiert. Mithilfe dieser Formableitung lasst
sich wiederum fiir die Formableitung des Randpotentials schreiben

(07729 (x)

——— + kP (m)) 0 - ndl’ + /an’ (x)dl. (4-17)

U’(Q)B:/ -

r
Der Gradient der Potentialfunktion Vp (x) entspricht dem negativen Gradienten
der vorzeichenbehafteten Abstandsfunktion. Von daher kann fiir die Anderung
des Potentials in Normalenrichtung

Ip (z)
on

=Vp(x) n=-1 (4-18)

geschrieben werden. Wie im Abschnitt allgemein erldutert, erfasst der kriim-
mungsbehaftete Term knp (), welcher Anteil der Potentialinderung bei Ge-
bietstransformationen unter einem Verschiebungsfeld 8 auf die betragsméfiige
Veranderung der Strukturoberflache zuriickzufiithren ist.

Da die Potentialfunktion unabhéngig von der Level-Set-Entwicklung und damit un-
abhéngig von einer Verschiebung der Strukturgrenzen ist, kann die Formableitung
mit

p(x) =0 (4-19)

weiter vereinfacht werden. Schliellich ergibt sich die Formableitung des Randpo-
tentials als

U’(Q)e:/Fn(mp(w)—1)0-ndr:/rn(m(s—goo<w))—1)9.ndr. (4-20)

Darin ist die Potentialfunktion durch Gleichung ausgedriickt.

4.5 Beriicksichtigung der Fertigungsrestriktionen in
der Optimierung

4.5.1 Erweiterung des Optimierungsproblems

Zur Integration der Fertigungsrestriktionen in die Topologieoptimierung wird ein
neues Optimierungsproblem definiert. Im Rahmen dieser Arbeit wird dazu das
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in Kapitel eingefithrte Optimierungsproblem erweitert. Die Zielfunktion ist
weiterhin die Minimierung der mittleren Nachgiebigkeit. Neben der Erfiillung
einer Volumenrestriktion wird gefordert, dass das Randpotential verschwindet.
Das Optimierungsproblem léasst sich dann wie folgt definieren:

minJ(Q):C’(Q):/Qa(u):s(u)dQ
sodass Ry (Q) =V (Q) - V. :/QdQ—VZ =0 (4-21)
und RQ(Q):U(Q):/Fn(s—gpo(:c))dF:O.

4.5.2 Bildung der neuen Entwicklungsgeschwindigkeit

Zur Losung des neuen Optimierungsproblems werden nun geeignete Entwick-
lungsgeschwindigkeiten ermittelt. Wie in Kapitel gezeigt, kann das Optimie-
rungsproblem mithilfe einer erweiterten Lagrange-Funktion in eine unrestringierte
Optimierungsaufgabenstellung iiberfiihrt werden. Die Entwicklungsgeschwindig-
keiten werden anschliefend aus dessen Formableitung ermittelt. Fiir die beiden
Gleichheitsrestriktionen lasst sich die erweiterte Lagrange-Funktion geméafl Glei-
chung formulieren als

1
L(QNA) =T Q)+ MR (Q)+ T R2(Q) + X\ Ry () +
1

b

o R3(Q) . (4-22)

Darauthin wird die Formableitung der erweiterten Lagrange-Funktion gebildet.
Nach Gleichung lasst sich diese allgemein formulieren als

W@ = J () 0+ [Al + RlA(Q)] R () 6+
1 (4-23)
[)\2 + RZ(QQW Ry (Q)0.

Werden keine Volumenkrafte berticksichtigt, entspricht die Formableitung der mitt-
leren Nachgiebigkeit tiber den verdnderbaren Rand I'y dem Ausdruck in Gleichung
B-15] Die Formableitung des Volumens ist mit Gleichung beschrieben. Aus
Griinden der Ubersichtlichkeit sind beide Gleichungen hier noch einmal wiederholt.
Fiir die Formableitung der Zielfunktion gilt
J’(Q)BzC’(Q)Bz—/FOJ(u):s(u)@-ndF (4-24)

und fiir die Formableitung des Volumens gilt

R (Q)60=V'(2)6= /F 0 ndl. (4-25)
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Mithilfe dieser Resultate und der Formableitung des Randpotentials aus Gleichung
wird die Formableitung der erweiterten Lagrange-Funktion spezifiziert

éMS%&MGZ <—am) ()+M+[/a2\4 [M+

to (4-26)

& (e = oo @)r| (e = o (@) - 1)}6 mal' = [ wb - mar

Darin werden die Sensitivitdten durch das Skalarfeld w zusammengefasst. Bei einer
Minimierung nach der Methode des steilsten Abstiegs wird das Verschiebungsfeld
0 so gewahlt, dass eine Bewegung des Randes in Normalenrichtung zu einer
Minimierung der Lagrange-Funktion fithrt. Wie in Kapitel beschrieben, wird
dazu das Verschiebungsfeld als 8 = —wn ausgedriickt. Das Skalarfeld w bzw. die
Formsensitivitat der Lagrange-Funktion ergibt sich aus obiger Gleichung zu

w=—0(u): (H&H—UHQ V] .
Dot o [t - @) drfntete - (e - 1)

Zur Ableitung einer Entwicklungsgeschwindigkeit v, wird die Normalkomponente
des Verschiebungsfelds gewahlt v,, = 0 - n = —wn - n = —w. Diese entspricht den
negativen Formsensitivitaten der erweiterten Lagrange-Funktion. Damit lautet die
Level-Set-Entwicklungsgeschwindigkeit

v =0 (u): € (u) - Al—l/ndg V] (4-28)

[)\2+/ (e — o (x dF]n(ffC?—eOo(w))—l)-

In dem Geschwindigkeitsfeld ist der zu den Fertigungsrestriktionen gehérende
Teil nur auf dem Strukturrand definiert. Zur Losung der Entwicklungsgleichung
muss das Geschwindigkeitsfeld im gesamten Designraum definiert sein. Aus die-
sem Grund werden die Geschwindigkeiten ausgehend vom Rand in den tibrigen
Designraum extrapoliert. Dazu wird eine Velocity Extension nach dem in Kapitel

beschriebenen Verfahren durchgefiihrt.

4.5.3 MaBnahmen zur Verbesserung des Konvergenzverhaltens

Lokale Oszillationen des Strukturrandes

Wird das Geschwindigkeitsfeld in Form von Gleichung fiir Optimierungen
eingesetzt, kann sich das Konvergenzverhalten im Vergleich zu Optimierungen ohne
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Iteration 7 — 1 Iteration ¢ Iteration 7 + 1

[ ] Struktur # Induziertes Wachstum @ Randpunkt unzuginglich
/! Schrumpfen aufgrund iibriger Sensitivititen @ Randpunkt zuginglich

Abbildung 4-12: Ostzillation des Randes um eine zugéngliche und unzugangliche Lage im
Verlauf der Optimierung

Fertigungsrestriktionen signifikant verschlechtern. Ein Grund dafiir ist, dass im
Verlauf der Optimierung Oszillationen einzelner Randbereiche um eine zugéangliche
und eine unzugingliche Lage auftreten konnen. Bereiche, die durch das induzierte
Wachstum zugénglich werden, konnen in einer darauffolgenden Iteration wieder
unzuganglich werden. Die Problematik ist in Abbildung gezeigt. Dort ist eine
Struktur zu sehen, die in der Iteration ¢+ — 1 unzugangliche Randpunkte besitzt. Es
wird angenommen, dass die Struktur bei einer Optimierung ohne Fertigungsrestrik-
tionen in diesem Bereich schrumpfen wiirde. Uberwiegt der Geschwindigkeitsanteil
aus dem induzierten Strukturwachstum den des restlichen Geschwindigkeitsfelds,
bewegt sich der Rand nach auflen. In Iteration 7 sind alle Randpunkte zuganglich.
Dies fithrt dazu, dass nun kein Wachstum mehr induziert wird. In dieser Situation
fithren die iibrigen vorliegenden Sensitivitdten wieder zu einem Schrumpfen im
entsprechenden Bereich. Es tritt eine Oszillation zwischen einer zugénglichen und
unzuganglichen Lage auf. Dieser Effekt tritt in gleicher Weise in Bereichen auf, in
denen eine vorgegebene Mindestwandstarke unterschritten wird.

Um diesem Problem entgegenzuwirken, werden die Sensitivitdten des Potentials
zur aktuellen Iteration anteilig aus denen vorangegangener Iterationen zusammen-
gesetzt. Mit den Informationen vorheriger Iterationen wird in den Bereichen, die
gerade zuganglich geworden sind, weiterhin ein Wachstumsdruck erzeugt. Das
,Merken* der Sensitivitdten verhindert ein direktes Schrumpfen in den entsprechen-
den Bereichen. Von daher wird das berechnete Feld aus vergangenen und aktuellen
Sensitivitaten als Memory-Feld bezeichnet. Zu dessen Bildung werden jedoch nur
die Sensitivitaten des Potentials bzw. nur der Anteil der Fertigungsrestriktionen
genutzt. Werden die Sensitivitdten aus der Formableitung des Randpotentials
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(Gleichung [4—20)) notiert als

U'(Q)Bz/rn(/i(s—goo (az))—1)0-ndl“:/r5(ggc>9-ndl“, (4-29)

werden die Sensitivitaten des Memory-Felds in der Iteration ¢ definiert als

R N

Der darin enthaltene Faktor m beeinflusst, wie stark der Einfluss zurtickliegender
[terationen auf die aktuelle Iteration ist. Das Geschwindigkeitsfeld wird
daraus wie folgt umformuliert:

1
UpMem =0 (0) 1e(u) — A\ — —| [ dQ -V, |—
1M ) A VQ ] (4-31)
Dt fonle = oo (@) dr] (06 (e = 0 (@) ~ D

Ausbildung von Kanten

Auch die Notwendigkeit zur Ausbildung von Kanten kann zu einer Verschlechte-
rung des Konvergenzverhaltens fithren. Dazu sei auf die Abbildung verwiesen.
Darin kennzeichnet der gelb markierte Bereich einen exemplarischen zuganglichen
Bereich. Damit die rot markierten Randpunkte zuganglich werden, miisste sich
eine Kante ausbilden. Die Notwendigkeit zur Ausbildung dieser Kante fiihrt jedoch
zu einer deutlichen Verschlechterung des Konvergenzverhaltens. Eine verfeinerte
Diskretisierung solcher Bereiche triagt zu einer Minderung dieses Problems bei.
Um dieses Problem vollstiandig zu umgehen, wird der Abstand der unzuganglichen
Randpunkte zum zuginglichen Bereich ermittelt. Ahnlich wie bei der Wandstéirke-
nerkennung geschieht dies in Normalenrichtung iiber die Interpolation an mehreren
Interpolationspunkten. An jedem Interpolationspunkt wird die Zugénglichkeit
gepriift. Sobald ein Interpolationspunkt als zugénglich detektiert wurde, ist der
gesuchte Abstand aus der gewéhlten Schrittweite bekannt. Anschliefend werden
die Level-Set-Funktionswerte an den dazugehorigen Randpunkten um die jewei-
ligen Abstande Ay verringert. Dadurch wird die Strukturgrenze lokal auf den
Kantenverlauf verschoben. Dies wird jedoch nur bis zu einem maximalen Wert
von A@q, durchgefithrt. Dieser Wert entspricht in den folgenden numerischen
Versuchen einem Drittel der kleinsten vorkommenden Elementgrofie. Auflerdem
wird diese Methodik erst genutzt, sobald mindestens 99.5 % der Strukturoberflache
zuganglich sind.
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[ ] Struktur Zugénglicher Bereich \ Normaleneinheitsvektor
@ Randpunkt unzuginglich O Interpolationspunkt

Abbildung 4-13: Zur Ausbildung von Kanten wird der Abstand unzugénglicher
Randpunkte zum zugéanglichen Bereich ermittelt

4.6 Eingliederung der Fertigungsrestriktionen in den
Optimierungsablauf

Durch die Integration der Fertigungsrestriktionen andert sich der in Kapitel
vorgestellte Optimierungsablauf. Wie im Vorfeld erwahnt, wird in dieser Arbeit
der in Abbildung verdeutlichte Ablauf angewandt. Von daher beziehen sich
die folgenden Erlauterungen explizit auf diesen Ablauf. Eine Integration der Ferti-
gungsrestriktionen in die klassische Level-Set-Optimierung (Abbildung ist
aber auch uneingeschrankt moglich.

Der neue Optimierungsablauf unter Berticksichtigung der Fertigungsrestriktionen
ist in Abbildung gezeigt. Zu Beginn einer Optimierung miissen nun neben der
Optimierungsaufgabe die Fertigungsparameter eingelesen werden. Dazu zéhlen die
Geometrien der nutzbaren Werkzeuge, der Halterungen sowie der Hauptspindel.
Fiir eine Darstellung der bendtigten Mafle sei auf die Abbildungen in Kapitel
verwiesen. Zusatzlich miissen nutzbare Bearbeitungsrichtungen sowie eine einzuhal-
tende Mindestwandstarke definiert werden. Die Schritte zur Berticksichtigung der
Fertigungsrestriktionen reihen sich zwischen der Reinitialisierung der Level-Set-
Funktion und der Sensitivitdtsanalyse von Zielfunktion und Volumen ein. Nachdem
die Bereiche identifiziert wurden, in denen eine Fertigungsrestriktion verletzt ist,
wird die Potentialfunktion initialisiert bzw. reinitialisiert. Daraufthin werden die
Sensitivitaten des Randpotentials berechnet. Nachdem diese im Rahmen einer
Velocity Extension vom Strukturrand in den gesamten Designraum extrapoliert
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wurden, wird das Memory-Feld bestimmt. Darauthin entspricht der Optimierungs-
ablauf wieder dem, der ohne Beriicksichtigung der Fertigungsrestriktionen genutzt
wird.
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Abbildung 4-14: Eingliederung der Fertigungsrestriktionen in den Optimierungsablauf
von Topologieoptimierungen mit der Level-Set-Methode







5 Numerische Anwendungen

In diesem Kapitel werden verschiedene numerische Experimente unter Bertick-
sichtigung der Fertigungsrestriktionen durchgefithrt. Das Ziel besteht darin, zu
beurteilen, ob die Minimierung eines Randpotentials zur Erfilllung der Fertigungs-
restriktionen fiithrt. Dies beinhaltet eine Bewertung des Konvergenzverhaltens und
die Interpretation der mechanischen Eigenschaften der optimierten Strukturen.
Auflerdem werden Vergleiche mit kongruierenden Anwendungsbeispielen ohne
Einfluss der Fertigungsrestriktionen durchgefiihrt. Zu den numerischen Versuchen
gehoren zwei akademische Beispiele, in denen eine Wiirfelstruktur (siehe auch
Colling etal. (2024))) und ein Kragtréger optimiert werden sowie ein industrielles
Beispiel, in dem eine Lagerhalterung optimiert wird.

5.1 Details zur numerischen Umsetzung

Die numerische Umsetzung des Optimierungsverfahrens ist bereits in Kapitel
beschrieben worden und bildet die Grundlage fiir die folgenden Anwendungs-
beispiele. Zunachst werden Informationen iiber die verwendeten Werkzeug- und
Maschinendaten angegeben. Daraufthin erfolgt eine Auflistung aller gewéhlten
Optimierungsparameter. Im Anschluss werden numerische Details zum Interpola-
tionsverfahren konkretisiert und die verwendete Hardware spezifiziert.

Werkzeug- und Maschinendaten

Eine Darstellung der definierbaren Werkzeug- und Maschinenmafle ist in Abbildung
gezeigt. Diese beziehen sich auf die Abbildungen bis aus Kapitel [4.2.3]

In den numerischen Beispielen werden fiinf unterschiedliche Werkzeuge eingesetzt.
Deren Abmessungen sind in Tabelle aufgefiihrt. Die Werkzeugauswahl erfolgt
zum Teil so, dass die Zuganglichkeit in einigen Beispielen kiinstlich® erschwert wird.
Dies entspricht nicht immer einer praxisgerechten Werkzeugwahl, dient jedoch der
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Demonstration des Verfahrens. Der axiale Verfahrweg der Hauptspindel wird in
allen Beispielen auf den gleichen Wert begrenzt.
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Abbildung 5-1: Darstellung der definierbaren Werkzeug- und Maschinenmafle. Die Mafe
beziehen sich auf das in Kapitel eingefiihrte Interpolationsverfahren

Werkzeug lo ll lg l3 ay a2 agz Ty Th Sv

a) 60 50 50 20 40 O 5 10 10 100
b) 8 50 55 20 8 10 30 7 7 100
c) 50 50 50 40 40 O 20 10 10 100
d) 70 40 30 40 10 5 45 10 10 100
e) 50 30 25 25 6 10 30 4 4 100

Tabelle 5—-1: Verwendete Werkzeug- und Maschinenmafle. Alle Mafle sind in mm
angegeben



5.1 Details zur numerischen Umsetzung 73

Optimierungs- und Simulationsparameter

In Tabelle sind die gewahlten Optimierungsparameter sowie benotigte Werk-
stoffkennwerte aller Beispiele des Kapitels aufgelistet.

Parameter Symbol Wiirfel Kragtriager Lagerhalterung
Elastizitdtsmodul E 1 N/mm? 1N/mm? 200000 N/mm?
Poisson-Zahl v 0.3 0.3 0.27
Konvergenz-Schwellwert — £xone 0.0015 0.0015 0.01
Verstarkungsfaktor o 0.92 0.92 0.92
CFL-Zahl CFL 0.3 0.3 0.3
Entwicklungsschritte nrs 20 40 20

Volumenrestriktion

Lagrange-Multiplikator A 0.075 0.025 0.01
Strafparameter AY 1000 1000 1000
Fertigungsrestriktion

Lagrange-Multiplikator A 0.01 0.01 0.01
Strafparameter A 50 50 5
Memory-Feld

Memoryfaktor m 0.65 0.65 0.65

Tabelle 5—-2: Verwendete Optimierungs- und Simulationsparameter. Die angegebenen
Parameter des Lagrange-Verfahrens sind die Werte zu Beginn der Optimierung

Das Maf der Bestrafung einer Restriktionsverletzung wird nach Gleichung in
jeder Iteration mithilfe des Verstarkungsfaktors o erhoht. Sobald eine Restriktion
erfiillt ist, wird das dazugehorige Bestrafungsmafl konstant gehalten. Andernfalls
konnte der Einfluss einer moglichen erneuten Restriktionsverletzung auf die Ent-
wicklungsgeschwindigkeiten so grofl werden, dass das Verfahren instabil wird. Zur
Anregung von Topologieanderungen wird das Kragtréagerbeispiel mit einer hoheren
Anzahl von Entwicklungsschritten durchgefiihrt. Ist diese zu gering, bildet sich das
im zweiten Beispiel von Kapitel gezeigte Loch nicht aus und die Optimierung
konvergiert in einem schwachen lokalen Minimum.
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Interpolation

Die Interpolation der Level-Set-Funktion wird mit einem baryzentrischen Inter-
polationsverfahren durchgefiihrt. Dazu wird die Open Source Bibliothek ,,Scipy“
eingesetzt. Zur Reduktion der Rechenzeit wird dazu lediglich eine diinne Element-
schicht entlang des Strukturrandes beriicksichtigt. Diese Schicht muss positive
sowie negative Level-Set-Funktionswerte beinhalten. In Tabelle ist aufgefiihrt,
wie viele Interpolationspunkte in den Bereichen A-D (siehe Abbildungen bis
sowie in der Wandstarkeniiberpriifung genutzt werden. Die daraus resultie-
renden Schrittweiten sollten bei strukturierten Gittern héchstens so groff wie eine
Elementgrofe sein. Bei unstrukturierten Gittern sollten diese hochstens ein Drittel
der Elementgrofie betragen. Daher wird die Anzahl der Punkte so gewahlt, dass
sich in den Interpolationsbereichen A-C Schrittweiten von ca. 2.5 mm und im
Bereich D von ca. 5 mm einstellen. Aufgrund der gewahlten Werkzeugdimensionen
liegt Bereich D tiiberwiegend auflerhalb des Designraums. Aus Effizienzgriinden ist
die dortige Schrittweite daher doppelt so grofl gewahlt. Werden zu grofle Schrittwei-
ten gewahlt, ist die Erkennung unzuganglicher Bereiche ungenau. Unzugangliche
Bereiche werden dann vereinzelt nicht als solche erkannt.

Werkzeug n4 np nc np nw

a) 24 20 20 20 10
b) 36 20 22 24 10
c) 20 20 20 28 10
d) 28 16 12 28 10
e) 20 12 10 25 10

Tabelle 5—-3: Anzahl der genutzten Interpolationspunkte fiir alle gewéahlten Werkzeuge
und fiir die Wandstéarkenerkennung. Zum Vergleich siehe Kapitel

Hardware

Fiir alle Beispiele wird die gleiche Hardware eingesetzt. Zu den Hauptkomponenten
zéhlen eine 8-Kern-Intel®-Core™ i7-8700 CPU, 16 GB Hauptspeicher und eine
NVIDIA® GeForce® GTX 1080 GPU.
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Abbildung 5-2: Minimierung der mittleren Nachgiebigkeit einer belasteten
Wiirfelstruktur unter einer Volumenrestriktion. Alle Mafle sind in mm angegeben

5.2 Waurfel

Als einfiihrendes Anwendungsbeispiel wird die in Abbildung gezeigte belaste-
te Wiirfelstruktur optimiert. Die Auswahl dieser Struktur ist durch das Beispiel
,SupportStruct‘ aus der Arbeit von Morris et al. inspiriert. Die Optimie-
rung erfolgt zunachst ohne Fertigungsrestriktionen. Anschlieffend wird in diesem
Beispiel die Erfiillung einer Zuganglichkeitsrestriktion gefordert.

Der Wiirfel besitzt eine Kantenldnge von 300 mm. Dessen Oberflache kennzeichnet
die Grenzen des verfiigbaren Designraums. An den vier schraffierten quadrati-
schen Flachen ist der Wiirfel fest fixiert. Auf der grau markierten Flache der
Oberseite wird eine Flichenlast von 0.1 N/mm? aufgebracht. Der Startentwurf
fillt den gesamten Designraum mit Strukturmaterial aus, wobei im Schwerpunkt
des Wiirfels eine kugelférmige Aussparung vorgegeben wird. Diese besitzt einen
Durchmesser von 100 mm. Die mittlere Nachgiebigkeit wird wie in den Beispielen
aus Kapitel so normiert, dass diese bei einem vollstandig mit Strukturmaterial
ausgefiillten Designraum einen Wert von Cy = 1000 annimmt. Da im Startent-
wurf eine kugelférmige Aussparung vorgegeben wird, besitzt dieser eine normierte
mittlere Nachgiebigkeit von Cy = 1042. Als Restriktion wird das Erreichen eines
Volumentfiillgrads von Vp = 0.20 vorgegeben.
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5.2.1 Optimierung ohne Fertigungsrestriktionen

Die Optimierung konvergiert nach 86 Iterationen, wobei die optimierte Struktur

im gefundenen Optimum eine normierte mittlere Nachgiebigkeit von Cy = 1668
aufweist. In Abbildung ist die resultierende Struktur dargestellt. Diese nimmt
die Form von vier ineinanderlaufenden Stdben an. Dadurch wird die duflere Belas-

tung weitestgehend als Druckbeanspruchung von der Struktur aufgenommen. Die

numerischen Ergebnisse sind in Tabelle [5—4]in der linken Spalte zusammengefasst.
In der ersten Iteration wird die Struktur durch ca. 60.000 Elemente diskretisiert.

Dies fiihrt zu einer durchschnittlichen Iterationsdauer von 36 s.
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Abbildung 5-3: Vergleich der Dimensionierung der Werkzeuge a) und b) mit den
Abmessungen der Wiirfelstruktur. Fiir eine Auflistung aller Mafie siche Tabelle [5—1] Alle
Mafe sind in mm angegeben.
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Abbildung 5—4: Darstellung der drei gewéhlten Bearbeitungskonfigurationen I, IT und III.
Jeder schwarze Pfeil kennzeichnet eine Bearbeitungsrichtung
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5.2.2 Optimierung mit Zuganglichkeitsrestriktion

Nun wird die Losung der Optimierungsaufgabe unter dem Einfluss einer Zu-
ganglichkeitsrestriktion vorgestellt. Die Optimierungsbeispiele werden mit zwei
verschiedenen Werkzeuggeometrien durchgefiihrt. Dazu werden die in Tabelle [5—1
eingefithrten Werkzeuge a) und b) ausgewéahlt. In Abbildung ist die Dimensio-
nierung der Werkzeuge im Vergleich zur Wiirfelstruktur gezeigt. Wahrend Werk-
zeug a) eine vergleichsweise ,sperrige’ Geometrie aufweist, besitzt das Werkzeug
b) eine ,kompaktere’ Form. Aulerdem werden fir jedes Werkzeug unterschiedli-
che Bearbeitungsrichtungen untersucht. Die Menge aller Bearbeitungsrichtungen
pro Topologieoptimierung wird im weiteren Verlauf als Bearbeitungskonfiguration
bezeichnet. Fiir dieses Optimierungsbeispiel werden drei unterschiedliche Konfigu-
rationen eingefiihrt, die in Abbildung gekennzeichnet sind.

Die optimierten Strukturen unter Berticksichtigung beider Werkzeuge fiir sémtliche
Bearbeitungskonfigurationen sind in Abbildung dargestellt. Alle Strukturen
erfiillen die vorgegebenen Restriktionen. Das beste Optimierungsergebnis aller
Anwendungsbeispiele wird mit Werkzeug b) unter Bearbeitungskonfiguration II
erzielt. Dabei wird nach insgesamt 91 Iterationen eine normierte mittlere Nachgie-
bigkeit von Cy = 1799 erreicht. Dieser Wert ist um 7.9 % hoher als im Beispiel
ohne Berticksichtigung der Fertigungsrestriktion.

Das schlechteste Optimierungsergebnis wird mit Werkzeug a) unter Konfiguration
I erzielt. Nach insgesamt 110 Iterationen betragt die normierte mittlere Nachgie-
bigkeit Cy = 3265. Dieser Wert ist um 95.7 % grofier als bei der Optimierung
ohne Berticksichtigung der Fertigungsrestriktion.

In Abbildung ist exemplarisch das Konvergenzverhalten beider Restriktionen
sowie der Zielfunktion fiir Konfiguration I unter Verwendung von Werkzeug a)
gezeigt. Zu Beginn der Optimierung sind 6.7 % der Strukturoberfliche unzugang-
lich. Dieser Bereich ist der kugelférmigen Aussparung im Startentwurf zuzuordnen.
Auffillig ist der sprunghafte Anstieg der unzuganglichen Flache von 6.7 % auf
41 % in der dritten Iteration. Der Grund dafir ist, dass die Strukturoberflache
zu Beginn auf den Designraumgrenzen liegt. Diese sind in diesem Beispiel als
Rohteilgrenzen und damit als zugénglich definiert. Erst ab der dritten Iteration
entstehen neben der kugelférmigen Aussparung erste Bereiche, an denen keine
Werkzeugzuganglichkeit mehr gegeben ist. Der Verlauf der unzuganglichen Flache
verdeutlicht, dass die Minimierung des Randpotentials in kontinuierlichen Schrit-
ten zu einer Erfillung der Fertigungsrestriktion fithrt. Zwischen der 30. und der
65. Iteration steigt das Strukturvolumen an, nachdem es bis auf einen Wert von
Ve = 0.17 gesunken ist. Dies fithrt dazu, dass der Anteil unzugénglicher Flache
temporér auf einem Wert von ca. 16 % stagniert, bevor er bis zur 69. Iteration
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Cy (Q) = 2591

(b) Optimierungsergebnisse unter Verwendung von Werkzeug b)

Abbildung 5-5: Topologieoptimierung der Wiirfelstruktur unter dem Einfluss einer
Zuganglichkeitsrestriktion bei drei unterschiedlichen Bearbeitungskonfigurationen und
zwei verschiedenen Werkzeuggeometrien
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Abbildung 5-6: Konvergenzverhalten der Volumen- und Zugénglichkeitsrestriktion sowie
der mittleren Nachgiebigkeit bei Verwendung von Werkzeug a) unter
Bearbeitungskonfiguration I

auf einen Wert von 0 % fallt. Bis zur Erfilllung der Volumenrestriktion und des
Konvergenzkriteriums bleibt der Anteil unzuganglicher Flache bei nahezu 0 %.
Obwohl in Konfiguration III die meisten Bearbeitungsrichtungen zur Verfiigung ste-
hen, werden damit bei beiden Werkzeugen nicht die besten Optimierungsergebnisse
erzielt. Zu deuten ist dieses Verhalten folgendermaflen. In Bearbeitungskonfigura-
tion III werden viele Oberflachenbereiche redundant durch die fiinf vorhandenen
Bearbeitungsrichtungen abgedeckt. Im Gegensatz dazu wird durch die z-Richtung
in Konfiguration II insgesamt ein groBerer Oberflichenbereich zugénglich. Trotz der
nur drei verfiighbaren Bearbeitungsrichtungen kann sich eine Struktur ausbilden, die
starker der Struktur dhnelt, die ohne Berticksichtigung der Fertigungsrestriktion
entsteht. Damit einhergehend ist, dass eine kompaktere Werkzeugform tendenziell
zu besseren Optimierungsergebnissen fithrt. Solche Werkzeuge kénnen im Vergleich
zu sperrigen Werkzeugen mehr Oberflichenbereiche erreichen. Aus diesem Grund
werden mit Werkzeug b) in jedem Optimierungsbeispiel die besten Ergebnisse
erzielt.

Auf Basis dieser Beobachtungen kénnte eine Strategie zur Auswahl der Bearbei-
tungsrichtungen darauf basieren, zunéchst eine Optimierung ohne Fertigungsre-
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striktion durchzufithren. Anhand der optimierten Struktur kénnen die Bearbei-
tungsrichtungen anschlieflend ausgewahlt werden. Diese miissen so gewahlt werden,
dass ein grofitmoglicher Anteil der Oberfliche der optimierten Struktur zuganglich
wird. Bei zwei moglichen Bearbeitungsrichtungen bzw. Maschinenspannvorgéngen
waren das in diesem Beispiel die z-Richtung und die —z-Richtung. Unter den
definierten Bearbeitungskonfigurationen wird mit Konfiguration II der grofite
Oberfldchenanteil der optimierten Struktur aus Abbildung zugénglich. Diese
Methodik lasst sich auch automatisiert umsetzen. Vor der Optimierung wird dann
nur noch die Anzahl der Bearbeitungsrichtungen vorgegeben. In jeder Iteration
werden die Bearbeitungsrichtungen ausgewahlt, die zu einer maximalen Zugang-
lichkeit der Strukturoberflache fiihren. Eine im Vorfeld stattfindende Optimierung
ohne Fertigungsrestriktion ist dann nicht notig.

Ohne  Werkzeug a) Werkzeug b)

Bearbeitungskonfiguration - I II II1 I II I1I1

Normierte mittlere Nachgiebig-
keit
Anderung Zielfunktion [%] ~ 957 189 312 553 7.9 107

1668 3265 1984 2190 2591 1799 1846

Maximal entstandener Anteil B 439 319 259 338 950 948

unzugéanglicher Oberflache [%)]

Anzahl Iterationen 86 110 103 118 106 91 121
Anderung Anzahl Iterationen B 979 198 379 933 58 407
[70]

Iterationsdauer [s] 36 42 42 42 42 42 42

Tabelle 5—4: Resultate der Optimierungen der Wiirfelstruktur. In der grau markierten
Spalte stehen die Ergebnisse ohne Beriicksichtigung der Fertigungsrestriktion. Auf dieses
Beispiel beziehen sich Angaben zu prozentualen Anderungen

In Tabelle sind erganzend die Iterationsdauern angegeben. Im Vergleich zur
Optimierung ohne Fertigungsrestriktion verldngert sich die durchschnittliche Ite-
rationsdauer um ca. 17 %. AuBerdem ist festzuhalten, dass sich mit Nutzung der
Fertigungsrestriktion die Anzahl benétigter Iterationen erhoht.
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5.3 Kragtrager

Als nachstes Anwendungsbeispiel wird die Topologieoptimierung des in Kapitel
behandelten Kragtragers unter dem Einfluss von Fertigungsrestriktionen
untersucht. Die Zielfunktion und Volumenrestriktion des Einfithrungsbeispiels
werden fiir die folgenden numerischen Experimente tibernommen. Von daher erfolgt
die Minimierung der mittleren Nachgiebigkeit ebenfalls unter der Restriktion, einen
Volumenfiillgrad von Vg = 0.15 zu erreichen. Im Rahmen mehrerer numerischer
Beispiele wird zunachst explizit der Einfluss von Wandstérkenrestriktionen auf die
Optimierungsergebnisse analysiert. Anschliefend wird eine kombinierte Anwendung
beider Fertigungsrestriktionen untersucht. In den Beispielen werden keine Locher
im Startentwurf vorgegeben.

5.3.1 Optimierung ohne Fertigungsrestriktion

Die Optimierungsergebnisse ohne den Einfluss von Fertigungsrestriktionen sind
bereits in Kapitel diskutiert worden. In Abbildung ist die optimierte
Struktur gezeigt. Zum Vergleich mit den nachfolgenden Beispielen dieses Kapitels
sind die numerischen Ergebnisse in der linken Spalte von Tabelle angegeben.

5.3.2 Optimierung unter verschiedenen Mindestwandstarken

Um den Einfluss von einzuhaltenden Mindestwandstarken auf die Optimierungser-
gebnisse zu untersuchen, wird eine Reihe von numerischen Beispielen durchgefiihrt.
Diese umschlieit die Vorgabe sechs unterschiedlicher Mindestwandstéirken. Begin-
nend bei einer Mindestwandstarke von 30 mm wird diese in jedem weiteren Beispiel
um 10 mm erhoht. Im letzten Beispiel betragt die einzuhaltende Mindestwandstar-
ke 80 mm. Wie Allaire et al. (2016) betonen, kann eine Wandstarkenrestriktion
Topologieanderungen hemmen. Eine solche Hemmung entsteht immer dann, wenn
diinne Strukturbereiche kurz vor einer Verschmelzung ihrer dortigen Strukturrén-
der stehen. Zur Einhaltung der Mindestwandstarke werden entsprechende Bereiche
verdickt', bevor die Verschmelzung der Strukturgrenzen stattfinden kann. Aus
diesem Grund sollte die Wandstéarkenrestriktion nicht von Beginn der Optimierung
an aktiv sein. In den folgenden Beispielen wird diese ab der 45. Iteration aktiviert,
sobald fiir den Volumentiillgrad 0.13 < Vg < 0.17 gilt.

In Abbildung sind die optimierten Strukturen fiir Mindestwandstarken von
30 mm bis 50 mm dargestellt. Die optimierten Strukturen fiir Mindestwandstérken
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von 60 mm bis 80 mm sind in Abbildung[5—8|zu schen. Alle numerischen Ergebnisse
sind der Tabelle (=8 zu entnehmen.

Bei einer Gegeniiberstellung der Optimierungsergebnisse féllt auf, dass die Min-
destwandstarke mit dem erreichten Wert der Zielfunktion korreliert. Je hoher die
einzuhaltende Wandstarke ist, desto grofler wird die mittlere Nachgiebigkeit der
optimierten Strukturen. Bei der geringsten Mindestwandstéarke liegt die normierte
mittlere Nachgiebigkeit bei C'y = 3196. Dagegen liegt diese bei der hochsten Min-
destwandstarke bereits bei Cy = 12850, was einem Anstieg um 311.5 % entspricht.
Damit einhergehend ist ein Anstieg der benétigten Iterationen. Zur Deutung
dieses Verhaltens sei zunéchst auf die Struktur mit einer Mindestwandstérke von
30 mm verwiesen. Zur Aufnahme der Biegespannungen wird vergleichsweise viel
Strukturmaterial auf der Ober- und Unterseite des Kragtragers verteilt. In den
dazwischen liegenden Bereichen ist die Biegebelastung geringer. Aus diesem Grund
wird in diesen Bereichen weniger Strukturmaterial ausgebildet und zusatzlich ein
Loch erzeugt. Wird nun die Mindestwandstéirke erhoht, muss zur Erfillung der
Wandstérkenrestriktion mehr Strukturmaterial in den weniger biegebeanspruchten
Bereich zwischen Ober- und Unterseite des Kragtragers gelegt werden. (Voraus-
gesetzt, die Mindestwandstérke ist hoher als die Wandstéarke im entsprechenden
Bereich.) Aufgrund der Volumenrestriktion muss darauthin Strukturmaterial von
der starker belasteten Ober- und Unterseite entfernt werden. Dies fiihrt letzt-
endlich zu einer Erhohung der mittleren Nachgiebigkeit. Ab einer Wandstérke
von 70 mm muss zur Erfilllung der Volumenrestriktion zusétzlich der Abstand
zwischen den oberen und unteren Strukturbereichen reduziert werden. Dies fiihrt
wiederum zu erhohten Verschiebungen an der Krafteinleitungsstelle. Bei einer
Mindestwandstérke von 80 mm wird kein Loch mehr erzeugt. Ober- und Unterseite
verschmelzen im vorderen Bereich des Tragers zu einer zylindrischen Struktur.
Zur Erfillung beider Restriktionen ist es nicht mehr moglich, Material in die
stark biegebeanspruchten Bereiche zu verlagern. Daraus resultiert zwangslaufig
ein sprunghafter Anstieg der mittleren Nachgiebigkeit.

5.3.3 Optimierung unter Zuganglichkeits- und
Wandstarkenrestriktion

Als Néchstes wird die Topologieoptimierung des Kragtragers unter dem Einfluss
einer Zuganglichkeits- und Wandstarkenrestriktion untersucht. Wie bei der Opti-
mierung der Wiirfelstruktur werden unterschiedliche Bearbeitungskonfigurationen
zugrunde gelegt. Die zwei fiir dieses Beispiel gewéhlten Konfigurationen sind in
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Volumen- und Wandstarkenrestriktion. Gezeigt sind die optimierten Strukturen bei
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Abbildung 5-8
Volumen- und Wandstarkenrestriktion. Gezeigt sind die optimierten Strukturen bei

Mindestwandstarken von 60 mm bis 80 mm
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Ohne Mit Wandstarkenrestriktion

Mindestwandstarke [mm] — 30 40 50 60 70 80
E;Emlerte mittlere Nachgiebig- o105 5196 3096 3273 3626 4887 12850
Anderung Zielfunktion [%] — 23 33 48 16.1 56.5 3115

Maximal entstandener Anteil

1. . 124 20.8 32.6 69.0
diinnwandiger Oberflache [%] 5 3T

Anzahl Iterationen 68 72 7 95 98 101 156
Anderung Anzahl Iterationen ¢ o100 900 441 4g5 1294
(7]

Iterationsdauer |[s] 45 50, b5 55 55 55 55

Tabelle 5-5: Resultate der Optimierungen des Kragtriagers mit verschiedenen

Mindestwandstarken. In der grau markierten Spalte stehen die Ergebnisse ohne

Beriicksichtigung der Wandstérkenrestriktion. Darauf beziehen sich Angaben zu
prozentualen Anderungen

Abbildung dargestellt. Fir die Optimierungen werden Werkzeug c¢) und Werk-
zeug d) verwendet (siehe auch Tabelle p-1). Ein Vergleich der Dimensionierung der
Werkzeuge mit den Abmessungen der Kragtriagervorderseite ist in Abbildung [5—10
gezeigt. Als einzuhaltende Mindestwandstiarke wird exemplarisch w,;, = 50 mm

gewahlt.
Die optimierten Strukturen sind fiir beide Bearbeitungskonfigurationen unter

Abbildung 5-9: Bearbeitungskonfigurationen I und II des Kragtrigers. Jeder schwarze
Pfeil kennzeichnet eine Bearbeitungsrichtung
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Abbildung 5-10: Vergleich der Dimensionierung der Werkzeuge c) und d) mit der des
Kragtragers. Fiir eine Auflistung aller Mafle siehe Tabelle Alle Mafle sind in mm
angegeben

Verwendung von Werkzeug c) in Abbildung dargestellt. Darunter sind
in Abbildung die jeweiligen Strukturen bei Verwendung von Werkzeug
d) zu sehen. Das beste Design entsteht bei Verwendung von Werkzeug d) mit
Bearbeitungskonfiguration II. Dessen normierte mittlere Nachgiebigkeit betragt
Cxy = 3356 und ist damit um weitere 2.5 % hoher als bei ausschlieSlicher Bertick-
sichtigung der Wandstéarkenrestriktion. Im Gegensatz dazu wird das schlechteste
Design mit Werkzeug c¢) unter Konfiguration I erzielt. Die Zielfunktion nimmt
dabei einen Wert von C'y = 5532 an. Im Vergleich zur exklusiven Beriicksichtigung
der Mindestwandstérke ergibt sich durch die Zuschaltung der Zuganglichkeitsre-
striktion ein Anstieg der mittleren Nachgiebigkeit um 70.2 %.

Auffallig sind die Materialansammlungen auf der fixierten Riickseite des Kragtra-
gers. Bis auf den Versuch unter Konfiguration IT mit Werkzeug d) treten diese
Ansammlungen in verschiedenen Auspragungsgraden immer auf. Der Grund fiir
deren Entstehung ist die dort eingeschriankte Werkzeugzuganglichkeit. Das dortige
Strukturmaterial kann nicht auf mechanisch wichtigere Stellen verlagert werden.
Erst bei Verwendung von Werkzeug d) unter Konfiguration II kann dieser Bereich
nahezu génzlich erreicht werden. Die damit optimierte Struktur dhnelt daher in
Form und mechanischen Eigenschaften stark derjenigen, die bei ausschliellicher
Berticksichtigung der Wandstarkenrestriktion resultiert. Dies unterstreicht erneut,
dass sowohl die Bearbeitungsrichtungen als auch die Werkzeuggeometrie entschei-
dend das Optimierungsergebnis beeinflussen. Sind die Bearbeitungsrichtungen
identisch, werden die besseren Ergebnisse mit dem kompakteren Werkzeug erzielt.
An dieser Stelle sei darauf hingewiesen, dass die beschriebenen Materialansamm-
lungen auch bei einer Reduktion des Zielvolumentfiillgrades weiter bestehen bleiben
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On (Q) = 4500 e

(b) Optimierte Strukturen unter Verwendung von Werkzeug d)

Abbildung 5-11: Topologicoptimierung des Kragtriagers unter dem Einfluss einer
Volumenrestriktion, Zugénglichkeitsrestriktion sowie einer Wandstérkenrestriktion mit
zwei unterschiedlichen Bearbeitungskonfigurationen und zwei verschiedenen
Werkzeuggeometrien
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Abbildung 5-12: Konvergenzverhalten der Volumenrestriktion, beider
Fertigungsrestriktionen und der Zielfunktion fiir Werkzeug c) mit
Bearbeitungskonfiguration II. In der rot markierten Iteration 61 wird die
Wandstarkenrestriktion aktiviert

wiirden. Da die genutzten Werkzeuge diese Bereiche aufgrund der Lagerstellen
nicht erreichen kénnen, miisste an anderen Stellen der Struktur das Volumen weiter
reduziert werden. Ist das gewiinschte Zielvolumen jedoch zu niedrig, kann nicht
mehr gentigend Strukturmaterial zur Verbindung der Lager- und Belastungsstellen
verwendet werden. In diesem Fall wiirde die Optimierung abbrechen.

In Abbildung [5—12]ist exemplarisch das Konvergenzverhalten fiir die Optimierung
unter Bearbeitungskonfiguration IT mit Werkzeug c) gezeigt. Wie im vorherigen
Beispiel ist der schlagartige Anstieg restriktionsverletzender Bereiche zu Beginn der
Optimierung darauf zuriickzufiihren, dass der Startentwurf als vollstdndig herstell-
bar definiert ist bzw. als Rohteil vorausgesetzt wird. Auffillig ist der sprunghafte
Anstieg entsprechender Bereiche ab der 61. Iteration. Dieser entsteht durch die
Aktivierung der Wandstérkenrestriktion. Zum Zeitpunkt der Aktivierung gehoren
ca. 16 % der Oberflache Strukturbereichen an, welche die Mindestwandstérke
unterschreiten. Durch die Minimierung des Randpotentials an den entsprechen-
den Bereichen werden die Wandstérken innerhalb von drei Iterationen auf den
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geforderten Mindestwert erhoht. Wie anhand des Volumentfiillgrades zu sehen
ist, fithrt das induzierte Strukturwachstum zwangslaufig zu einem beschleunig-
ten Anstieg des Strukturvolumens. Dies fiihrt wiederum zu einer beschleunigten
Reduktion der mittleren Nachgiebigkeit ab der 61. Iteration. In den folgenden
[terationen muss das Strukturvolumen wieder auf den Zielwert reduziert wer-
den, was zu einem erneuten Anstieg der mittleren Nachgiebigkeit fiithrt. In der
99. Iteration ist das Konvergenzkriterium schliellich erfiillt. Die Aktivierung der
Wandstarkenrestriktion beeinflusst die Anzahl benotigter Iterationen. Je starker
der schlagartige Anstieg restriktionsverletzender Bereiche bei der Aktivierung
der Wandstarkenrestriktion ist, desto stérker pragt sich die zuvor beschriebene
Schwankung der Zielfunktion und des Strukturvolumens aus. Dementsprechend
werden mehr Iterationen benotigt, um das Konvergenzkriterium zu erfiillen.
Weiterhin ist zu beobachten, dass die Optimierung mit Werkzeug d) unter Konfi-
guration II nahezu die gleiche Anzahl Iterationen benotigt wie die Optimierung
bei reiner Berticksichtigung der Wandstarkenrestriktion. Dies liegt daran, dass in
dem entsprechenden Beispiel bereits ab der 36. Iteration alle Oberflachenberei-
che zuginglich sind. Zum Zeitpunkt der Aktivierung der Wandstarkenrestriktion
— auch hier in der 61. Iteration — beeinflusst das induzierte Strukturwachstum an
den zu diinnen Bereichen nahezu kaum die Zugénglichkeit der Strukturoberflache.
Es stellt sich von da an ein dhnlicher Optimierungsverlauf wie im Beispiel bei
reiner Berticksichtigung der Wandstéarkenrestriktion ein.

Abschlieflend sind in Tabelle die numerischen Ergebnisse zusammengefasst.
Je hoher die fertigungsbezogenen geometrischen Anforderungen aufgrund vor-
liegender Werkzeuggeometrien und verfiigharer Bearbeitungsrichtungen an die
Struktur sind, desto schlechter werden deren mechanischen Eigenschaften. Bei
zusatzlicher Berticksichtigung der Zugénglichkeitsrestriktion ist die erzielte mitt-
lere Nachgiebigkeit in allen Fallen hoher als bei ausschliellicher Nutzung der
Wandstarkenrestriktion. Die Iterationsdauern erwecken bei einem Vergleich mit
Tabelle den Anschein, dass die Zugénglichkeitsrestriktion deutlich weniger
Rechenzeit in Anspruch ndhme als die Wandstéarkenrestriktion. Den grofiten Anteil
der Rechenzeit nimmt jedoch die gemeinsame Velocity Extension in Anspruch
(siehe auch Kapitel [4.6). Von daher verursacht die Zuschaltung der Zugénglich-
keitsrestriktion in diesem Beispiel lediglich einen Anstieg der Iterationsdauern um
weitere 2 s.
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Ohne Werkzeug c) Werkzeug d)

Bearbeitungskonfiguration — - I IT I IT
Mindestwandstarke [mm] — 50 50 50 50 50

Normierte mittlere Nachgiebig- 2193 3973 5532 3592 4500 3356

keit

Anderung Zielfunktion [%] - 48 771 15.0 441 7.5
Maximal entstandener Anteil

restriktionsverletzender Ober-  — 124  35.1 29.3 24.4 16.7
flache [%]

Anzahl Iterationen 68 95 109 99 99 94

Anderung Anzahl Iterationen

(%]

Iterationsdauer [s] 45 b5 57 57 57 57

Tabelle 5—-6: Resultate der Optimierungen des Kragtrigers. In der ersten Spalte stehen
die Ergebnisse ohne Berticksichtigung der Fertigungsrestriktionen. Auf dieses Beispiel

- 39.7 60.3 45.6 45.6 38.2

beziehen sich die Angaben zu prozentualen Anderungen

5.4 Lagerhalterung aus der Luftfahrtindustrie

Als abschlieflendes Beispiel wird ein in der Luftfahrtindustrie eingesetztes Bauteil
optimiert. Es handelt sich dabei um die in Abbildung gezeigte Lagerhal-
terung, die in Flugzeugtriebwerken zur Lagerung der Wartungsluken benotigt
wird. Die Optimierungsaufgabenstellung lehnt sich an einen Wettbewerb (Aurplane
Bearing Bracket Challenge)) der Firma GrabCAD® aus dem Jahr 2016 an, in dem
eine solche Lagerhalterung fiir eine anschliefende additive Fertigung optimiert
wurde. Eine Referenz zur Wettbewerbsspezifikation ist im Literaturverzeichnis
unter GradCAD zu finden.

Wiéhrend des Betriebs wird die Lagerhalterung durch zwei verschiedene Lastfalle
beansprucht. Diese sind in Abbildung gekennzeichnet. Dazu zéhlen die in
Abbildung gekennzeichnete Belastung von F, = 5 kN in z-Richtung und die
in Abbildung gezeigte Belastung von F, = 10 kN in —z-Richtung. Die Be-
lastung wird im Schwerpunkt des Lagersitzes aufgebracht. (In der urspriinglichen
Wettbewerbsspezifikation wird ein dritter Lastfall mit einer Kraft, die um 45° zwi-
schen F, und F, geneigt angreift, beriicksichtigt. Da der Fokus dieses Kapitels auf
der Demonstration der Topologieoptimierung unter Einfluss der Frasrestriktionen
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Abbildung 5-13: Lagerhalterung einer Triebwerk-Wartungsluke als CAD-Modell. Alle
Mafe sind in mm angegeben

A A

F, = —10 kN
(a) Lastfall 1 (b) Lastfall 2

Abbildung 5-14: Belastung der Lagerhalterung durch zwei Lastfélle. Die
Nicht-Design-Bereiche sind blau markiert

liegt, wird dieser Lastfall zur Vereinfachung im Folgenden vernachléssigt.) Zur
Montage der Lagerhalterung sind vier Schraubverbindungen vorgesehen. In der
Struktursimulation werden diese Verbindungen als feste Fixierungen mit einem
starren Untergrund modelliert. Das Optimierungsziel besteht darin, die mittlere
Nachgiebigkeit zu minimieren und dabei einen Volumenfiillgrad von V, = 0.4 zu
erreichen. Wie in den vorherigen Beispielen wird die mittlere Nachgiebigkeit so
normiert, dass der vollstandig mit Strukturmaterial ausgefiillte Entwurfsraum den
Wert Cy = 1000 annimmt. Wéahrend der Optimierung werden die Sensitivitaten
der Zielfunktion jeweils fiir beide Lastfalle bestimmt. Die Summe der Sensitivitaten
beider Lastfélle wird zur Bildung der Entwicklungsgeschwindigkeiten genutzt. Als
Werkstoff wird ein Chrom-Edelstahl (Werkstoffnummer 1.4545) vorausgesetzt. Die
fiir die Struktursimulation benotigten Werkstoffkennwerte sind in Tabelle [5—2| zu
finden.
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(b) Topologieoptimierung der Lagerhalterung mit der Vorgabe von Lochern

Abbildung 5-15: Topologieoptimierung der Lagerhalterung ohne Beriicksichtigung von
Fertigungsrestriktionen

Einige Bereiche des Bauteils, auch Nicht-Design-Bereiche genannt, diirfen wahrend
der Optimierung nicht verédndert werden. Diese Bereiche sind in Abbildung
als blaue Fliachen gekennzeichnet. Darunter fallen die vier Bohrungen fiir die
Schraubverbindungen und der Lagersitz. Auflerdem muss gewéhrleistet sein, dass
die optimierte Lagerhalterung kollisionsfrei montiert werden kann. Von daher
wird die Oberflache der montierbaren Lagerhalterung aus Abbildung als
Designraumgrenze definiert. So ist gewahrleistet, dass im Optimierungsverlauf kein
Strukturmaterial iiber die maximalen Abmessungen der Lagerhalterung hinaus
ausgebildet wird. Es werden zwei verschiedene Startentwiirfe untersucht. Als erster
Startentwurf wird der zur Verfiigung stehende Designraum vollstdndig mit Struk-
turmaterial ausgefiillt. Im zweiten Startentwurf wird der mit Strukturmaterial
aufgefiillte Designraum zusétzlich mit drei kugelférmigen Aussparungen versehen.
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5.4.1 Optimierung ohne Fertigungsrestriktionen

Die Optimierung ohne Beriicksichtigung der Fertigungsrestriktionen konvergiert
nach 28 Iterationen. Im gefundenen Optimum nimmt die normierte mittlere
Nachgiebigkeit den Wert Cy = 3464 an. In Abbildung ist die optimierte
Struktur dargestellt. Ein geringfiigig besseres Ergebnis wird mit dem zweiten
Startentwurf erzielt, der mit Lochern versehen ist. In Abbildung ist die
resultierende Struktur zu sehen. Die dazugehorige Optimierung konvergiert nach
30 Iterationen und die normierte mittlere Nachgiebigkeit betrigt im gefundenen
Optimum Cpy = 3244. Da mit der Vorgabe von Lochern im Startentwurf ein
besseres Ergebnis erzielt wurde, wird dieser auch fiir die folgenden Optimierungen
verwendet.

Abbildung 5-16: Topologieoptimierung der Lagerhalterung unter Berticksichtigung der

Zugénglichkeitsrestriktion. Die schwarzen Pfeile markieren die Bearbeitungsrichtungen

5.4.2 Optimierung mit Fertigungsrestriktionen

Fiir die Topologieoptimierung der Lagerhalterung unter Beriicksichtigung der
Fertigungsrestriktionen wird zunachst nur die Gewéhrleistung der Werkzeugzu-
ganglichkeit beachtet. Fir die Fertigung wird das Werkzeug e) verwendet (siche
Tabelle . Gefertigt werden soll aus den zwei in Abbildung [5—16| gekennzeichne-

ten Bearbeitungsrichtungen. Dazu zahlen die +y-Richtung sowie die —y-Richtung.
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Cy (Q) = 4096

Abbildung 5-17: Topologieoptimierung der Lagerhalterung unter Beriicksichtigung der
Zuganglichkeits- und Wandstérkenrestriktion. Die roten Pfeile kennzeichnen Stellen, an
denen die Wandstéarke erhoht wurde

In dieser Kombination aus Bearbeitungsrichtungen und Werkzeuggeometrie sind
mehrere Oberflédchenbereiche der zuvor in Abschnitt optimierten Strukturen
unzugénglich. Insgesamt sind 4.5 % der Oberflache der in Abbildung ge-
zeigten Struktur unzugénglich. Fur die Struktur in Abbildung betragt der
Anteil 6.9 %. In letzterer Struktur ist der Wert aufgrund von Hinterschneidungen
im Bereich der ausgebildeten Locher erhoht. In diesem Beispiel wird vorausgesetzt,
dass die vier Montagebohrungen durch separate Bohrverfahren gefertigt werden.
Dazugehorige Oberflachenbereiche werden demnach als zugénglich klassifiziert.
Nach 59 Iterationen konvergiert das Optimierungsverfahren. Im gefundenen Opti-
mum besitzt die Struktur eine normierte mittlere Nachgiebigkeit von Cy = 3625.
Diese ist um 11.7 % hoher als im vorherigen Beispiel ohne Berticksichtigung der
Zugénglichkeitsrestriktion. In Abbildung ist die optimierte Struktur gezeigt.
Zur Gewahrleistung der Werkzeugzugénglichkeit wird zwischen den Bohrungen
Strukturmaterial ausgebildet. Die vorgegebenen Aussparungen wachsen im Verlauf
der Optimierung aufgrund der dort eingeschrankten Werkzeugzuganglichkeit in
sich zusammen.

Nun wird die Topologieoptimierung der Lagerhalterung um eine zusétzliche Wand-
starkenrestriktion ergénzt. Im urspriinglichen Wettbewerb betrug die einzuhaltende
Mindestwandstérke 1.2 mm. Diese Anforderung erfiillt die zuletzt optimierte Struk-
tur bereits. Zu Demonstrationszwecken wird daher fiir dieses Beispiel eine erhohte
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Mindestwandstarke von 8 mm gewahlt. Um potenzielle Topologieanderungen nicht
zu hemmen, wird die Wandstérkenrestriktion nicht von Beginn an aktiviert. Ahn-
lich wie bei der Optimierung des Kragtragers wird diese ab der 45. Iteration
aktiviert, sobald fiir den Volumenfiillgrad 0.38 < Vr < 0.42 gilt.

Das Optimierungsverfahren konvergiert nach 67 Iterationen. Im gefundenen Op-
timum besitzt die Lagerhalterung eine normierte mittlere Nachgiebigkeit von
Cx = 4096. Die Hinzunahme der Wandstéirkenrestriktion fithrt demnach zu einem
weiteren Anstieg der mittleren Nachgiebigkeit um 13.0 %. In Abbildung ist
die optimierte Struktur dargestellt. Zur Erfillung der Wandstarkenrestriktion
muss Strukturmaterial an die in der Abbildung rot markierten Stellen verlagert
werden. Dabei werden die konkav gekriimmten Rénder auf der Ober- und Un-
terseite der Halterung verdickt. Zur Erfassung der dortigen Wandstarken wird
das in Abbildung verdeutlichte Prinzip eingesetzt. Zusammenfassend sind
alle numerischen Ergebnisse dieses Kapitels in Tabelle [5—7] aufgelistet. Fiir die
Optimierungen dieses Beispiels werden aufgrund der zwei zugrunde liegenden
Lastfalle zwei FE-Simulationen pro Iteration durchgefiithrt. Dadurch steigen die
Iterationsdauern im Vergleich zu den anderen Optimierungsbeispielen dieser Arbeit
vergleichsweise stark an.

Ohne Werkzeug e)

Locher im Startentwurf Nein Ja Ja Ja
Mindestwandstérke [mm|] — - — 8
Normierte mittlere Nachgiebigkeit 3464 3244 3625 4096
Anderung Zielfunktion [%] - —63 46 18.24
Maximal entstandener Anteil restriktionsver- B 53 54
letzender Oberflache [%)]

Anzahl ITterationen 28 30 59 64
Anderung Anzahl Iterationen [%)] — 71 111.0 128.6
Iterationsdauer [s] 73 74 98 98

Tabelle 5—7: Resultate der Optimierungen der Lagerhalterung. In der ersten Spalte
stehen die Ergebnisse ohne Berticksichtigung der Fertigungsrestriktionen und ohne
Vorgabe von Lochern im Startentwurf. Auf dieses Beispiel beziehen sich die Angaben zu
prozentualen Anderungen
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5.4.3 Spannungsanalyse der optimierten Lagerhalterung

Fiir alle Optimierungsbeispiele dieser Arbeit wird als Zielfunktion die Minimie-
rung der mittleren Nachgiebigkeit gewédhlt. Deren Minimierung fithrt jedoch nicht
gleichzeitig zu einer Minimierung der mechanischen Spannungen. In der Folge
konnen ortliche Spannungsspitzen entstehen, die die Streckgrenze des Werkstoffs
iiberschreiten. Um zu beurteilen, ob die optimierten Lagerhalterungen unter
Belastung lediglich elastisch verformt werden, folgt eine Analyse der Von-Mises-
Vergleichsspannungen.

oy =0 N/mm?

(v mas = 8361 N/mm? [ 0V maw = 690.7 N/mm?

Lastfall 1 Lastfall 2

(a) Optimierte Lagerhalterung unter Zuginglichkeitsrestriktion

(0Vimas = 872.5 N/mm” | [ 0Vimas = 755.6 N/mm’ |

Lastfall 1 Lastfall 2
(b) Optimierte Lagerhalterung unter Zugénglichkeits- und Wandstérkenrestriktion

Abbildung 5-18: Darstellung der Von-Mises-Vergleichsspannungen der optimierten

Lagerhalterungen fiir jeweils beide Lastfille

Bei der urspriinglichen Lagerhalterung aus Abbildung entsteht die grofite
Von-Mises-Vergleichsspannung unter Lastfall 1 und betragt oy 4, = 662.1 N/ mm?.
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Unter Lastfall 2 nimmt diese einen Wert von oy, = 496.2 N/ mm? an. Diese
liegen damit unter der Streckgrenze des Werkstoffs. Laut Wettbewerbsspezifikation
betriagt die Streckgrenze Ry = 1000 N/mm?. Fiir die unter Beriicksichtigung
der Fertigungsrestriktionen optimierten Lagerhalterungen sind die entstehenden
Von-Mises-Vergleichsspannungen in Abbildung gezeigt.

In der Abbildung markieren die schwarzen Pfeile die Stellen, an denen die maxi-
malen Vergleichsspannungen auftreten. Die groffiten Spannungen treten auch bei
den optimierten Strukturen unter Lastfall 1 auf. Mit einem Wert von oy,e: =
872.5 N/mm? ist diese fiir die mit beiden Fertigungsrestriktionen optimierte Struk-
tur am groften (Abbildung p—18p, links). Beim Lastfall 2 tritt die maximale
Spannung ebenfalls in der unter beiden Fertigungsrestriktionen optimierten Struk-
tur auf (Abbildung [f-18p, rechts). Der Bereich maximaler Spannung liegt auf
der Unterseite der Lagerhalterung, nahe der Bohrungen. Im gekennzeichneten
Bereich betréigt die vorliegende Spannung oy 4. = 755.6 N/ mm?. Auch in diesem
Beispiel fiihrt die einzuhaltende Mindestwandstérke dazu, dass Strukturmaterial
aus mechanisch wichtigen Stellen entfernt und in zu diinne Bereiche verlagert
werden muss. Dies fiihrt dazu, dass die mittlere Nachgiebigkeit ansteigt. Daraus
resultiert eine erhohte Verformung in den markierten Bereichen und damit eine
erhohte mechanische Spannung.

In allen optimierten Lagerhalterungen treten unter Belastung keine plastischen Ver-
formungen auf. Ware dieser Fall eingetreten, miissten die Spannungsspitzen durch
manuelle Strukturveranderungen reduziert werden. Auch eine erneute Optimierung
mit angepasster Optimierungsaufgabe ist denkbar. Falls konstruktiv moglich, konn-
te der Volumenfiillgrad erhoht werden. Alternativ konnten die mechanischen Span-
nungen in Form einer Zielfunktion — anstatt der mittleren Nachgiebigkeit — oder
einer zusatzlichen Restriktion beriicksichtigt werden. Im Gegensatz zur mittleren
Nachgiebigkeit sind mechanische Spannungen jedoch lokale Struktureigenschaften.
Diese reagieren hochgradig nichtlinear auf Form- und Topologieanderungen. Eine
Berticksichtigung der mechanischen Spannungen im Optimierungsverfahren kann
je nach dazu verwendeter Methodik zu instabilen Optimierungsverlaufen fithren.
Die Integration der mechanischen Spannungen in die Topologieoptimierung ist
weiterhin Bestandteil zahlreicher Forschungsarbeiten.






6 Zusammenfassung und Ausblick

In dieser Dissertation wird ein Verfahren zur Topologieoptimierung frésbarer Struk-
turen unter Anwendung der Level-Set-Methode entwickelt. Als frasbar wird eine
Struktur klassifiziert, wenn deren zu bearbeitende Oberfléche fiir ein vordefiniertes
Fraswerkzeug vollstandig zuganglich ist. Dazu werden realistische Geometrien
des Werkzeugs, dessen Halterung sowie der Hauptspindel beriicksichtigt. Exem-
plarisch wird fiir alle Ausfithrungen der Arbeit die 3-Achs-Bearbeitung gewéhlt.
Zum FEinbezug der Umspannvorgiange werden Bearbeitungsrichtungen eingefiihrt.
Als weitere Fertigungsrestriktion wird die Einhaltung einer vorgegebenen Min-
destwandstéarke untersucht. Die Wandstérkenrestriktion soll bei Optimierungen
frasbarer Strukturen zur Vermeidung diinnwandiger Strukturbereiche und damit
gleichzeitig zu einer wirtschaftlicheren Fertigung beitragen.

Die Grundlage des entwickelten Verfahrens besteht darin, wahrend einer Opti-
mierung an nicht zuganglichen oder zu diinnen Stellen ein Strukturwachstum zu
induzieren. Um diese Stellen zu identifizieren, wird ein Interpolationsverfahren
eingefithrt. Dabei wird die Level-Set-Funktion ausgehend von Randpunkten der
Struktur entlang der Aulenkonturen des verwendeten Fraswerkzeugs in mehreren
Schritten interpoliert. Die in diesem Zuge abgetasteten Interpolationswege sind
abhéngig von den verfiigharen Bearbeitungsrichtungen und der Geometrie von
Werkzeug, Werkzeughalterung und Hauptspindel. Falls ein dabei interpolierter
Funktionswert negativ ist, wird der dazugehorige Randpunkt als unzugénglich
markiert. Zur Erkennung diinnwandiger Bereiche wird ausgehend von den Rand-
punkten der Struktur eine Interpolation normal zum Strukturrand durchgefiihrt.
Dabei sind die Interpolationswege in die Struktur hinein gerichtet und besit-
zen die Lange der Mindestwandstarke. Die Wandstirke an einem Randpunkt
ist ausreichend, wenn entlang des Interpolationsweges nur negative Level-Set-
Funktionswerte auftreten.

Fiir die Induktion des Strukturwachstums wird ein Potentialfeld im Entwurfsraum
mithilfe der vorzeichenbehafteten Abstandsfunktion erzeugt. Dieses Feld besitzt
innerhalb der Struktur hohere Werte als auflerhalb der Struktur. Eine nach auflen
gerichtete Bewegung des Strukturrandes verringert demnach das Potential auf
dem Rand. Durch eine Sensitivitdtsanalyse wird die Reduktion des Randpotentials
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in die Entwicklungsgeschwindigkeiten der Level-Set-Funktion integriert. Beide
Fertigungsrestriktionen werden schliefflich in die Reduktion eines gemeinsamen
Randfunktionals tiberfiihrt.

In numerischen Beispielen wird demonstriert, dass das induzierte Strukturwachs-
tum im Rahmen von Topologieoptimierungen zu frasbaren Strukturen fiihrt. Die
Optimierungsergebnisse zeigen, dass die mechanischen Eigenschaften der opti-
mierten Strukturen maflgeblich von den zugrunde liegenden Werkzeuggeometrien
und zulédssigen Bearbeitungsrichtungen abhangig sind. Eine diinne und kompakte
Werkzeuggeometrie fiihrt tendenziell zu besseren Optimierungsergebnissen als
vergleichsweise sperrige Werkzeuge. Die Ergebnisse der numerischen Beispiele
zeigen, dass die Wahl der Bearbeitungsrichtungen mafigeblich beeinflusst, wie viel
Strukturmaterial in mechanisch wichtigen Bereichen ausgebildet werden kann bzw.
wie viel Strukturmaterial in mechanisch wenig beanspruchten Bereichen zur Erfiil-
lung der Fertigungsrestriktion verlagert werden muss. Letzterer Anteil reduziert
sich tendenziell, wenn durch die Wahl der Bearbeitungsrichtungen ein moglichst
grofer Anteil der Strukturoberfléche zuginglich wird. Dieser Anteil verringert sich
ebenfalls mit abnehmender Mindestwandstéirke. Auflerdem ist festzuhalten, dass
sich unter dem Einfluss der Fertigungsrestriktionen zwar die Anzahl benétigter
Iterationen erhoht, aber dennoch ein gutes Konvergenzverhalten zu beobachten
ist. In der gewahlten numerischen Umsetzung des Verfahrens steigen durch die
Nutzung der Zugéanglichkeitsrestriktion die Iterationsdauern um bis zu 17 % an.
In Kombination mit der Wandstarkenrestriktion kann dieser Anstieg bis zu 26 %
betragen.

Im Rahmen von weiterfithrenden Forschungsarbeiten sind Erweiterungen des Ver-
fahrens zu untersuchen. Ein erster Forschungsschwerpunkt ist die Ausweitung
des Verfahrens auf die 4-Achs- und 5-Achs-Bearbeitung. Durch die komplexere
Werkzeugkinematik konnen potenziell bessere Designs erzielt werden. Im gleichen
Zuge sinkt tendenziell die benotigte Anzahl durchzufithrender Umspannvorgénge,
um vergleichbare mechanische Eigenschaften zu erzielen. Ein Ansatz dazu kann
die Erweiterung des Interpolationsverfahrens auf Bearbeitungsrichtungen sein,
die nicht in Richtung der Linearachsen des verwendeten Bearbeitungszentrums
orientiert sind.

Auflerdem ist ein weiterer offener Forschungspunkt die Optimierung der Fertigungs-
zeit. Die in dieser Arbeit optimierten Strukturen sind nur unter vergleichsweise
hohen Fertigungszeiten und damit einhergehenden hohen Fertigungskosten herstell-
bar. Hier ist die Entwicklung einer Restriktion denkbar, die z. B. die Ausbildung
senkrecht aufeinander orientierter Strukturflichen bevorzugt. Auch eine Optimie-
rung der Bearbeitungsrichtungen unter der Vorgabe einer maximal zulassigen
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Anzahl von Umspannvorgéngen kénnte in eine Optimierung der Fertigungszeiten
einbezogen werden.

Schliellich bleibt zu untersuchen, wie sich der Maschinenspannvorgang in die Opti-
mierung integrieren lasst. Abhéngig von der jeweiligen Struktur miissen aktuell zu
deren Einspannung in einem Bearbeitungszentrum spezielle Vorrichtungen gebaut
werden. Kénnten Spannvorrichtungen direkt wahrend der Optimierung berticksich-
tigt werden, wiirden sich geeignete Spannflachen ausbilden. Die Ausbildung solcher
Flachen sollte zielgerichtet unter Beriicksichtigung der vorliegenden Zielfunktion
erfolgen.

Weiter ist eine Kombination der entwickelten Methodik mit alternativen — insbeson-
dere numerisch aufwendigeren — Zielfunktionen oder Restriktionen zu untersuchen.
Mit Bezug auf das zuletzt durchgefithrte Optimierungsbeispiel ist eine naheliegen-
de Wahl die Minimierung der Von-Mises-Vergleichsspannungen. Weiterfithrende
Forschungsarbeiten konnten Aufschliisse dartiber liefern, inwieweit solche Ziel-
funktionen, aber auch alternative Restriktionen, das Konvergenzverhalten und
die resultierenden mechanischen Eigenschaften von Topologieoptimierungen unter
Beriticksichtigung der Frasrestriktionen beeinflussen.
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Anhang A

Herleitung der Formableitung eines
Gebietsfunktionals

Nach den Ausfithrungen von Walker (2015) wird zunéchst das iiber das transformier-
te Gebiet €, C R" erfasste Funktional J (£2;) mithilfe des Transformationssatzes
fir Integrale umgeformt zu

/ F(Q)dQ = /f )) det (V® (z)) dQ, (A1)

wobei die Variation eines Gebietes €2 C R™ mit n = 2 oder n = 3 unter einem
Verschiebungsfeld 0 : @ — R"™ durch die Abbildung ® (z) mit

P(x)=x;=x+t0 Firallex c QAt € RT (A-2)
beschrieben wird. Differenziert man Ausdruck folgt

d d

() dQ) = o (z))) det (VP (z)) A2
Cr@)=3 (] re S5 <w>>> HTE)E@
+ [ F@( det(V(I)( ) dQ.

Die Anderung der Funktion f iiber ¢ (materielle Ableltung) leitet (Walker zu

d

/(@ @) =1(Q)+(6-V) () (A-4)
her. Mithilfe des in seiner Arbeit formulierten Lemmas 5.1

;tdet (VO (z))|,_,=V-6 wd Vo(z)| =1 (A-5)

kann unter Verwendung der Einheitsmatrix I sowie des Divergenz-Theorems fiir
die Formableitung geschrieben werden:

IO =TI )], = [ (f(©)+(8-9)F(2)+(V-0)f(©)d0

dt (A-6)
= [ F(@d2+ [ £(©2)0 ndl.



Anhang B
Losung der Entwicklungsgleichung

B.1 Differenzenquotienten

Die Ortsableitung der Level-Set-Funktion ¢ wird in Kapitel durch Differen-
zenquotienten diskretisiert. Zu deren Bildung wird vorausgesetzt, dass ein Knoten ¢
in Richtung z einen linken Nachbarknoten ¢ — 1 und einen rechten Nachbarknoten
i+ 1 mit x; 1 < x; < x;41 besitzt. Betrdgt der Abstand zwischen zwei Knoten
Az, gilt fiir den rechtsseitigen Differenzenquotienten D; ¢

Pi+1 — Pi
Df*p=17_T" B-1
Fiir den linksseitigen Differenzenquotienten D; “¢ gilt entsprechend
— Yi — Pi—1
D p="——"—. B-2
i e Ao (B-2)

B.2 Eindimensionales Losungsschema

Liegt am Knoten ¢ eine Entwicklungsgeschwindigkeit v,,, vor, ergibt sich im Ein-

dimensionalen nach Sethian (1999) die entwickelte Level-Set-Funktion ¢ zum
Zeitpunkt k£ 4+ 1 und dem Zeitschritt At tiber das Lésungsschema
O = oF — At (max (Vn;,0) VT + min (v, 0) V_) (B-3)
2 2\ 2
mit V= — (max (D7%¢,0)" + min (Df*¢,0) ) (B-4)

D=

und V7~ = — (max (D;rxgp, 0)2 + min (Di_mgo, 0)2) . (B-5)



Anhang C

Eulersche Drehmatrizen

Soll ein Vektor a in einem kartesischen z, y, z-Koordinatensystem um einen Winkel
v um eine der Koordinatenachsen rotiert werden, kann dazu eine auf Euler
zuriickgehende Drehmatrix R () verwendet werden. Diese ergeben sich nach
Burg et al. (2012) fiir die drei Koordinatenachsen wie folgt:

Rotation um die z-Achse:

1 0 0
R,(y)=1]0 cosy —siny (C-1)
0 —siny cosvy

Rotation um die y-Achse:

cosy 0 —sin~y
R,()=|0 1 0 (C-2)

siny 0 cosvy
Rotation um die z-Achse:

cosy —siny 0
R, (y) = |siny cosy 0 (C-3)
0 0 1

Der rotierte Vektor a,,; ergibt sich mithilfe der Drehmatrizen aus der Gleichung

ao=R(7) a. (C4)
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