OMS - Optimization of Mechanical Structures

This area is concerned with the exploration of extensions of the classical voxel method, which finds new layouts based on the density distribution. One extension in particular is worth mentioning: the FET/Sheet metal - Finite Element based Topology optimization for sheet metal, which finds layouts that take into account the fact that sheet metal structures are involved.

Dienemann, R., Schumacher, A. (2019): "Manufacturing Constraint for deep drawn Sheet Metals in Density based Topology Optimization", Proceeding of the World Congress of Structural and Multidisciplinary Optimization, May 20-24, 2019, Beijing, China

Ramsaier, M., Till, M., Schumacher, A., Rudolph, S. (2019): "On a Physics-based Reconstruction Algorithm for Generating Clean Parametric Native CAD-Models from Density-based Topology Optimization Results", Proceeding of the World Congress of Structural and Multidisciplinary Optimization, May 20-24, 2019, Beijing, China

Hafsa, S., Butt, J., Schumacher, A. (2019): "New geometric features in the topology optimization for adaptation of structures", , in: X.Guo, H. Huang (eds.): Advances in Structural and Multidisciplinary Optimization, ISBN 978-7-89437-207-9, 258-263

Ramsaier, M., Breckle, T., Till, M. , Rudolph. S., Schumacher, A. (2019): Automated evaluation of manufacturability and cost of steel tube constructions with graph-based design languages, 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Elsevier

Dienemann, R., Schumacher, A., Fiebig, S. (2018): "An Element Deactivation and Reactivation Scheme for the Topology Optimization based on the Density Method", in: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, K.-U., Maute, K. (Hrsg.): Advances in Structural and Multidisciplinary Optimization, Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12), Springer Nature, 1127-1142, 2018

Weider, K., Marschner, A., Schumacher, A. (2017) “A Systematic Study on Topology Optimization of Crash Loaded Structures using LS-TaSC”, Proc. of the 11th European LS-DYNA Conference 2017, 9. - 11. Mai 2017, Salzburg, Austria, 2017

Dienemann, R., Schumacher, A., Fiebig, S. (2017): “Using topology optimization for finding shell structures manufactured by deep-drawing”, Journal of Structural and Multidisciplinary Optimization (2017) 56:473–485

Dienemann, R., Schumacher, A., Fiebig, S. (2016): “Topology and shape optimization of sheet metals with integrated deep-drawing-simulation”, Proceedings of the 12th World Congress on Computational Mechanics (WCCM XI) wccm2016.org/data/WCCM_Proceeding_v2.0.pdf

Dienemann, R., Schumacher, A., Fiebig, S. (2016): “Topology and shape optimization of sheet metals with integrated deep-drawing-simulation”, Proceedings of the 12th World Congress on Computational Mechanics (WCCM XI) wccm2016.org/data/WCCM_Proceeding_v2.0.pdf

Dienemann, R., Schumacher, A., Fiebig, S. (2016): “An efficient optimization method for mechanical shells considering cut-outs”, Proc. Appl. Math. Mech. 16, 713-714 (2016) onlinelibrary.wiley.com/doi/10.1002/pamm.201610345/epdf

Dienemann, R., Schumacher, A.; Fiebig, S. (2015): “Topology optimization considering the requirements of deep-drawn sheet metals”, Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimisation, 07th -12th, June 2015, Sydney, Australia http://web.aeromech.usyd.edu.au/WCSMO2015/papers/1102_paper.pdf

Lochner, I.; Schumacher, A. (2014): “Homogenization method: Distribution of material densities”, Chapter 17 in: S. Adriaenssens, P. Block, D. Veenendaal, C. Williams (eds.): Shells for Architecture - Form finding and structural optimization, Routledge-Verlag, ISBN 978-0-415-84060-6

Eschenauer, H.A., Schumacher, A. (1993): „Possibilities of Applying Various Procedures of Topology Optimization to Components subject to Mechanical Loads“. ZAMM-Z. angew. Math. Mech. 73, T 392-T394.

More information about #UniWuppertal: